ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学会発表・講演等
  2. ポスター発表

Disruption Prediction by Support Vector Machine and Neural Network with Exhaustive Search

https://repo.qst.go.jp/records/73194
https://repo.qst.go.jp/records/73194
01423cb5-07c6-4ba5-ac6d-6f42703ae5b2
Item type 会議発表用資料 / Presentation(1)
公開日 2019-02-05
タイトル
タイトル Disruption Prediction by Support Vector Machine and Neural Network with Exhaustive Search
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_c94f
資源タイプ conference object
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 横山達也

× 横山達也

WEKO 721378

横山達也

Search repository
末吉孝充

× 末吉孝充

WEKO 721379

末吉孝充

Search repository
三善, 悠矢

× 三善, 悠矢

WEKO 721380

三善, 悠矢

Search repository
日渡, 良爾

× 日渡, 良爾

WEKO 721381

日渡, 良爾

Search repository
五十嵐康彦

× 五十嵐康彦

WEKO 721382

五十嵐康彦

Search repository
岡田真人

× 岡田真人

WEKO 721383

岡田真人

Search repository
小川雄一

× 小川雄一

WEKO 721384

小川雄一

Search repository
三善 悠矢

× 三善 悠矢

WEKO 721385

en 三善 悠矢

Search repository
日渡 良爾

× 日渡 良爾

WEKO 721386

en 日渡 良爾

Search repository
抄録
内容記述タイプ Abstract
内容記述 A disruption is an event in which the plasma current suddenly shuts down in a tokamak reactor. Establishing methods to predict, mitigate, and avoid disruptions may be indispensable for realizing a tokamak reactor. In the present study, we have used the large dataset of high-beta experiments at JT-60U to develop a method for predicting the occurrence of disruptions. The method is based on sparse modeling that exploits the inherent sparseness common to all high-dimensional data, and it enables us to extract the maximum amount of information from the data efficiently. To carry out the sparse modeling, we have used exhaustive searches with a support vector machine and a neural network. In this research, we repeated the training and evaluation of the predictor while changing the combination of plasma parameters. As a result of the exhaustive search, we found |Bnr=1| and d|Bnr=1|/dt to be the dominant parameters for disruption predictions. This is not surprising, because MHD instabilities are considered to be the direct triggers of disruption. In addition, we have succeeded in identifying several important parameters that may also be strongly related to disruptions, i.e., βN, βP, q95, δ, fGW, and frad.
会議概要(会議名, 開催地, 会期, 主催者等)
内容記述タイプ Other
内容記述 The 26th International Toki Conference
発表年月日
日付 2017-12-06
日付タイプ Issued
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 19:31:57.336344
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3