{"created":"2023-05-15T14:53:44.975714+00:00","id":73194,"links":{},"metadata":{"_buckets":{"deposit":"ea1258a5-6f82-43d4-87e0-02913f316a27"},"_deposit":{"created_by":1,"id":"73194","owners":[1],"pid":{"revision_id":0,"type":"depid","value":"73194"},"status":"published"},"_oai":{"id":"oai:repo.qst.go.jp:00073194","sets":["10:28"]},"author_link":["721385","721384","721381","721379","721382","721380","721378","721386","721383"],"item_10005_date_7":{"attribute_name":"発表年月日","attribute_value_mlt":[{"subitem_date_issued_datetime":"2017-12-06","subitem_date_issued_type":"Issued"}]},"item_10005_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"A disruption is an event in which the plasma current suddenly shuts down in a tokamak reactor. Establishing methods to predict, mitigate, and avoid disruptions may be indispensable for realizing a tokamak reactor. In the present study, we have used the large dataset of high-beta experiments at JT-60U to develop a method for predicting the occurrence of disruptions. The method is based on sparse modeling that exploits the inherent sparseness common to all high-dimensional data, and it enables us to extract the maximum amount of information from the data efficiently. To carry out the sparse modeling, we have used exhaustive searches with a support vector machine and a neural network. In this research, we repeated the training and evaluation of the predictor while changing the combination of plasma parameters. As a result of the exhaustive search, we found |Bnr=1| and d|Bnr=1|/dt to be the dominant parameters for disruption predictions. This is not surprising, because MHD instabilities are considered to be the direct triggers of disruption. In addition, we have succeeded in identifying several important parameters that may also be strongly related to disruptions, i.e., βN, βP, q95, δ, fGW, and frad.","subitem_description_type":"Abstract"}]},"item_10005_description_6":{"attribute_name":"会議概要(会議名, 開催地, 会期, 主催者等)","attribute_value_mlt":[{"subitem_description":"The 26th International Toki Conference","subitem_description_type":"Other"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"metadata only access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_14cb"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"横山達也"}],"nameIdentifiers":[{"nameIdentifier":"721378","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"末吉孝充"}],"nameIdentifiers":[{"nameIdentifier":"721379","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"三善, 悠矢"}],"nameIdentifiers":[{"nameIdentifier":"721380","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"日渡, 良爾"}],"nameIdentifiers":[{"nameIdentifier":"721381","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"五十嵐康彦"}],"nameIdentifiers":[{"nameIdentifier":"721382","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"岡田真人"}],"nameIdentifiers":[{"nameIdentifier":"721383","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"小川雄一"}],"nameIdentifiers":[{"nameIdentifier":"721384","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"三善 悠矢","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"721385","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"日渡 良爾","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"721386","nameIdentifierScheme":"WEKO"}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"conference object","resourceuri":"http://purl.org/coar/resource_type/c_c94f"}]},"item_title":"Disruption Prediction by Support Vector Machine and Neural Network with Exhaustive Search","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Disruption Prediction by Support Vector Machine and Neural Network with Exhaustive Search"}]},"item_type_id":"10005","owner":"1","path":["28"],"pubdate":{"attribute_name":"公開日","attribute_value":"2019-02-05"},"publish_date":"2019-02-05","publish_status":"0","recid":"73194","relation_version_is_last":true,"title":["Disruption Prediction by Support Vector Machine and Neural Network with Exhaustive Search"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-05-15T19:31:57.251352+00:00"}