ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Deep architecture neural network-based real-time image processing for image-guided radiotherapy

https://repo.qst.go.jp/records/48828
https://repo.qst.go.jp/records/48828
4398d800-0919-484a-be82-cf373cfc9331
Item type 学術雑誌論文 / Journal Article(1)
公開日 2018-04-27
タイトル
タイトル Deep architecture neural network-based real-time image processing for image-guided radiotherapy
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 森, 慎一郎

× 森, 慎一郎

WEKO 491778

森, 慎一郎

Search repository
森 慎一郎

× 森 慎一郎

WEKO 491779

en 森 慎一郎

Search repository
抄録
内容記述タイプ Abstract
内容記述 Introduction: To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising.
\nMethods & Materials: Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training.
\nResults: More than 6 convolutional layers with convolutional kernels > 5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with > 3 convolutions each and rCNNs with > 12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality.
\nConclusions: Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer.
書誌情報 Physica medica

巻 40, p. 79-87, 発行日 2017-07
出版者
出版者 Istituti Editoriali e Poligrafici Internazionali
ISSN
収録物識別子タイプ ISSN
収録物識別子 1120-1797
DOI
識別子タイプ DOI
関連識別子 10.1016/j.ejmp.2017.07.013
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 23:23:52.655642
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3