WEKO3
アイテム
A Comparison of Chromosome Repair Kinetics in G0 and G1 Reveals that Enhanced Repair Fidelity under Noncycling Conditions Accounts for Increased Potentially Lethal Damage Repair
https://repo.qst.go.jp/records/45959
https://repo.qst.go.jp/records/4595930ed89b3-050d-4d6a-a390-0ca2f9e33779
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2010-12-08 | |||||
タイトル | ||||||
タイトル | A Comparison of Chromosome Repair Kinetics in G0 and G1 Reveals that Enhanced Repair Fidelity under Noncycling Conditions Accounts for Increased Potentially Lethal Damage Repair | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
Liu, CuiHua
× Liu, CuiHua× Kawata, Tetsuya× Shigematu, Naoyuki× A, Cucinotta Francesca× George, Kerry× Saitou, Masayoshi× Uno, Takashi× Isobe, Kouichi× Ito, Hisao× 劉 翠華× 茂松 直之× クシノッタ フランク× ジョージ ケリー× 斉藤 正好× 宇野 隆× 伊東 久夫 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Potentially lethal damage (PLD) and its repair were studied in confluent human fibroblasts by analyzing the kinetics of chromosome break rejoining and misrejoining in irradiated cells that were either held in noncycling G0 phase or allowed to enter G1 phase of the cell cycle immediately after 6 Gy irradiation. Virally mediated premature chromosome condensation (PCC) methods were combined with fluorescence in situ hybridization (FISH) to study chromosomal aberrations in interphase. Flow cytometry revealed that the vast majority of cells had not yet entered S phase 15 h after release from G0. By this time some 95% of initially produced prematurely condensed chromosome breaks had rejoined, indicating that most repair processes occurred during G1. The rejoining kinetics of prematurely condensed chromosome breaks was similar for each culture condition. However, under noncycling conditions misrepair peaked at 0.55 exchanges per cell, while under cycling conditions (G1) it peaked at 1.1 exchanges per cell. At 12 h postirradiation, complex-type exchanges were sevenfold more abundant for cycling cells (G1) than for noncycling cells (G0). Since most repair in G0/G1 occurs via the non-homologous end-joining (NHEJ) process, increased PLD repair may result from improved cell cycle-specific rejoining fidelity of the NHEJ pathway. |
|||||
書誌情報 |
Radiation Research 巻 174, 号 5, p. 566-573, 発行日 2010-11 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 0033-7587 |