量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
Background: Nano-scale drug delivery systems (nano-DDS) are under active investigation. Nano-platforms are developed for specific administration of small molecules, drugs, genes, contrast agents [quantum dots (QDs] both in vivo and in vitro. Electroporation is a biophysical phenomenon which consists of the application of external electrical pulses across the cell membrane. The aim of this study was to research electro-assisted Colon 26 cell line internalization of QDs and QD-loaded nano-hydrogels (polymersomes) visualized by confocal microscopy and their influence on cell viability. Materials and Methods: The experiments were performed on the Colon 26 cancer cell line, using a confocal fluorescent imaging system and cell viability test. Results: Electroporation facilitated the delivery of nanoparticles in vivo. We demonstrated increased voltagedependent delivery of nanoparticles into cells after electrotreatment, without significant cell viability reduction. Conclusion: The delivery and retention of the polymersomes in vitro is a promising tool for future cancer treatment strategies and nanomedcine.
雑誌名
Anticancer Research
巻
36
号
9
ページ
4601 - 4606
発行年
2016-09
出版者
International Institute of Anticancer Research (IIAR)