ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Deep learning-based in vivo dose verification from proton-induced secondary-electron-bremsstrahlung images with various count level

https://repo.qst.go.jp/records/86294
https://repo.qst.go.jp/records/86294
0026bc24-2693-4830-8b29-2be702ce0fc1
Item type 学術雑誌論文 / Journal Article(1)
公開日 2022-05-26
タイトル
タイトル Deep learning-based in vivo dose verification from proton-induced secondary-electron-bremsstrahlung images with various count level
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Takuya, Yabe (Nagoya Univ.)

× Takuya, Yabe (Nagoya Univ.)

WEKO 1055855

Takuya, Yabe (Nagoya Univ.)

Search repository
Mitsutaka, Yamaguchi

× Mitsutaka, Yamaguchi

WEKO 1055856

Mitsutaka, Yamaguchi

Search repository
Chih-Chieh, Liu (UC Davis)

× Chih-Chieh, Liu (UC Davis)

WEKO 1055857

Chih-Chieh, Liu (UC Davis)

Search repository
Toshiyuki, Toshito (Nagoya Proton Therapy Center)

× Toshiyuki, Toshito (Nagoya Proton Therapy Center)

WEKO 1055858

Toshiyuki, Toshito (Nagoya Proton Therapy Center)

Search repository
Naoki, Kawachi

× Naoki, Kawachi

WEKO 1055859

Naoki, Kawachi

Search repository
Seiichi, Yamamoto (Nagoya Univ.)

× Seiichi, Yamamoto (Nagoya Univ.)

WEKO 1055860

Seiichi, Yamamoto (Nagoya Univ.)

Search repository
Mitsutaka, Yamaguchi

× Mitsutaka, Yamaguchi

WEKO 1055861

en Mitsutaka, Yamaguchi

Search repository
Naoki, Kawachi

× Naoki, Kawachi

WEKO 1055862

en Naoki, Kawachi

Search repository
抄録
内容記述タイプ Abstract
内容記述 Purpose: Proton-induced secondary-electron-bremsstrahlung (SEB) imaging is a promising method for estimating the ranges of particle beam. However, SEB images do not directly represent dose distributions of particle beams. In addition, the ranges estimated from measured images were deviated because of limited spatial resolutions of the developed x-ray camera as well as statistical noise in the images. To solve these problems, we proposed a method for predicting high-resolution dose images from SEB images with various count level using a deep learning (DL) approach for range and width verification.
Methods: In this study, we adopted the double U-Net model, which is a previously proposed deep convolutional network model. The first U-Net model in the double U-Net model was used to denoise the SEB images with various count level. The first U-Net model for denoising was trained on 8000 pairs of SEB images with various count level and noise-free images which were created by a sophisticated in-house developed model function. The second U-Net model for dose prediction was trained using 8000 pairs of denoised SEB images from the first U-Net model and high-resolution dose images generated by Monte Carlo simulation.
Results: For both simulation and measurement data, the trained DL model could successfully predict high-resolution dose images which showed a clear Bragg peak and no statistical noise. The difference of the range and width was less than 2.1 mm, even from the SEB images measured with a decrease in the number of irradiated protons to less than 11% of 3.2 ×10^11 protons.
Conclusions: High-resolution dose images from measured and simulated SEB images were successfully predicted by using the trained DL model for protons. Our proposed DL model was feasible to predict dose images accurately even with smaller number of irradiated protons.
書誌情報 Physica Medica

巻 99, p. 130-139, 発行日 2022-06
出版者
出版者 Elsevier
ISSN
収録物識別子タイプ ISSN
収録物識別子 1120-1797
DOI
識別子タイプ DOI
関連識別子 10.1016/j.ejmp.2022.05.013
関連サイト
識別子タイプ URI
関連識別子 https://www.sciencedirect.com/science/article/pii/S1120179722019883?via%3Dihub
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 16:46:58.999862
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3