WEKO3
アイテム
Effects of Concurrent Exposure to Chronic Restraint-Induced Stress and Total-Body Iron Ion Radiation on Induction of Kidney Injury in Mice
https://repo.qst.go.jp/records/86062
https://repo.qst.go.jp/records/860628f734985-a894-4116-9d92-ca0b5b8c819a
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2022-04-28 | |||||
タイトル | ||||||
タイトル | Effects of Concurrent Exposure to Chronic Restraint-Induced Stress and Total-Body Iron Ion Radiation on Induction of Kidney Injury in Mice | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
Xu, Duling
× Xu, Duling× Li, Hongyan× Takanori, Katsube× Huang, Guomin× Liu, Jiadi× Bing, Wang× Zhang, Hong× Takanori, Katsube× Bing, Wang |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Concurrent exposure to ionizing radiation (IR) and psychological stress (PS) may affect the development of adverse health consequences in scenarios such as space missions, radiotherapy and nuclear accidents. IR can induce DNA damage and cell apoptosis in the kidneys, thus potentially leading to renal fibrosis, which is the ultimate outcome of various chronic progressive nephropathies and the morphological manifestation of a continuous coordinated response after renal injury. However, little is known regarding the effects of concurrent IR exposure and PS on renal damage, particularly renal fibrosis. In this study, using a chronic restraint-induced PS (CRIPS) model, we exposed Trp53-heterozygous mice to total body irradiation with 0.1 or 2 Gy 56Fe ions on the eighth day of 28 consecutive days of a restraint regimen. At the end of the restraint period, the kidneys were collected. The histopathological changes and the degree of kidney fibrosis were assessed with H&E and Masson staining, respectively. Fibronectin (FN) and alpha smooth muscle actin (α-SMA), biomarkers of fibrosis, were detected by immunohistochemistry. Analysis of 8-hydroxy-2 deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, was performed with immunofluorescence, and terminal deoxynucleotidyl transferase-mediated nick end labeling assays were used to detect apoptotic cells. Histopathological observations did not indicate significant structural damage induced by IR or CRIPS + IR. Western blotting revealed that the expression of α-SMA was much higher in the CRIPS + IR groups than the CRIPS groups. However, no differences in the average optical density per area were observed for FN, α-SMA and 8-OHdG between the IR and CRIPS + IR groups. No difference in the induction of apoptosis was observed between the IR and CRIPS + IR groups. These results suggested that exposure to IR (0.1 and 2 Gy 56Fe ions), 28 consecutive days of CRIPS or both did not cause renal fibrosis. Thus, CRIPS did not alter the IR-induced effects on renal damage in Trp53-heterozygous mice in our experimental setup. | |||||
書誌情報 |
International Journal of Molecular Sciences 巻 23, 号 9, p. 4866, 発行日 2022-04 |
|||||
出版者 | ||||||
出版者 | MDPI | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 1422-0067 | |||||
PubMed番号 | ||||||
識別子タイプ | PMID | |||||
関連識別子 | 35455056 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | 10.3390/ijms23094866 | |||||
関連サイト | ||||||
識別子タイプ | URI | |||||
関連識別子 | https://www.mdpi.com/1422-0067/23/9/4866 |