WEKO3
-
RootNode
アイテム
Space Exposure of Amino Acids and Their Precursors during the Tanpopo Mission
https://repo.qst.go.jp/records/85277
https://repo.qst.go.jp/records/8527751f13a24-2177-4592-9100-fbaf6e545b89
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2021-12-27 | |||||
タイトル | ||||||
タイトル | Space Exposure of Amino Acids and Their Precursors during the Tanpopo Mission | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
Kobayashi, Kensei
× Kobayashi, Kensei× Mita, Hajime× Kebukawa, Yoko× Nakagawa, Kazumichi× Kaneko, Takeo× Obayashi, Yumiko× Tomohito, Sato× Takuya, Yokoo× Minematsu, Saaya× Fukuda, Hitoshi× Oguri, Yoshiyuki× Yoda, Isao× Satoshi, Yoshida× Others× Kensei, Kobayashi× Yoko, Kebukawa× Takeo, Kaneko× Tomohito, Sato× Takuya, Yokoo× Oguri, Yoshiyuki× Satoshi, Yoshida |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Amino acids have been detected in extraterrestrial bodies such as carbonaceous chondrites (CCs), which suggests that extraterrestrial organics could be the source of the first life on Earth, and interplanetary dust particles (IDPs) or micrometeorites (MMs) are promising carriers of extraterrestrial organic carbon. Some amino acids found in CCs are amino acid precursors, but these have not been well characterized. The Tanpopo mission was conducted in Earth orbit from 2015 to 2019, and the stability of glycine (Gly), hydantoin (Hyd), isovaline (Ival), 5-ethyl-5-methylhydantoin (EMHyd), and complex organics formed by proton irradiation from CO, NH3, and H2O (CAW) in space were analyzed by high-performance liquid chromatography and/or gas chromatography/mass spectrometry. The target substances showed a logarithmic decomposition over 1–3 years upon space exposure. Recoveries of Gly and CAW were higher than those of Hyd, Ival, and EMHyd. Ground simulation experiments showed different results: Hyd was more stable than Gly. Solar ultraviolet light was fatal to all organics, and they required protection when carried by IDPs/MMs. Thus, complex amino acid precursors (such as CAW) were possibly more robust than simple precursors during transportation to primitive Earth. The Tanpopo 2 mission is currently being conducted to expose organics to more probable space conditions. | |||||
書誌情報 |
Astrobiology 巻 21, 号 12, p. 1479-1493, 発行日 2021-11 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 1473-5504 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | 10.1089/ast.2021.0027 | |||||
関連サイト | ||||||
識別子タイプ | URI | |||||
関連識別子 | https://www.liebertpub.com/doi/10.1089/ast.2021.0027 |