ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Learning temporal data with a variational quantum recurrent neural network

https://repo.qst.go.jp/records/84586
https://repo.qst.go.jp/records/84586
01ecb1e0-95b6-4a34-a0aa-0582fa626378
Item type 学術雑誌論文 / Journal Article(1)
公開日 2021-10-05
タイトル
タイトル Learning temporal data with a variational quantum recurrent neural network
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Takaki, Yuto

× Takaki, Yuto

WEKO 1020947

Takaki, Yuto

Search repository
Mitarai, Kosuke

× Mitarai, Kosuke

WEKO 1020948

Mitarai, Kosuke

Search repository
Makoto, Negoro

× Makoto, Negoro

WEKO 1020949

Makoto, Negoro

Search repository
Keisuke, Fujii

× Keisuke, Fujii

WEKO 1020950

Keisuke, Fujii

Search repository
Kitagawa, Masahiro

× Kitagawa, Masahiro

WEKO 1020951

Kitagawa, Masahiro

Search repository
Makoto, Negoro

× Makoto, Negoro

WEKO 1020952

en Makoto, Negoro

Search repository
Keisuke, Fujii

× Keisuke, Fujii

WEKO 1020953

en Keisuke, Fujii

Search repository
抄録
内容記述タイプ Abstract
内容記述 We propose a method for learning temporal data using a parametrized quantum circuit. We use the circuit that has a similar structure as the recurrent neural network, which is one of the standard approaches employed for this type of machine learning task. Some of the qubits in the circuit are utilized for memorizing past data, while others are measured and initialized at each time step for obtaining predictions and encoding a new input datum. The proposed approach utilizes the tensor product structure to get nonlinearity with respect to the inputs. Fully controllable, ensemble quantum systems such as an NMR quantum computer are a suitable choice of an experimental platform for this proposal. We demonstrate its capability with simple numerical simulations, in which we test the proposed method for the task of predicting cosine and triangular waves and quantum spin dynamics. Finally, we analyze the dependency of its performance on the interaction strength among the qubits in numerical simulation and find that there is an appropriate range of the strength. This work provides a way to exploit complex quantum dynamics for learning temporal data.
書誌情報 PHYSICAL REVIEW A

巻 103, 号 5, p. 052414, 発行日 2021-05
出版者
出版者 APS
ISSN
収録物識別子タイプ ISSN
収録物識別子 2469-9926
DOI
識別子タイプ DOI
関連識別子 10.1103/PhysRevA.103.052414
関連サイト
識別子タイプ URI
関連識別子 https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.052414
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:09:31.196855
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3