ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学会発表・講演等
  2. 口頭発表

Quantum-inspired machine learning for exponentially big neural data analysis

https://repo.qst.go.jp/records/84092
https://repo.qst.go.jp/records/84092
c3169b78-5ee2-4370-9cd7-e489932115a1
名前 / ファイル ライセンス アクション
ee2db7ef84247c08decc555bd565ce0b.pdf 1-page summary (233.3 kB)
Item type 会議発表用資料 / Presentation(1)
公開日 2021-11-23
タイトル
タイトル Quantum-inspired machine learning for exponentially big neural data analysis
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_c94f
資源タイプ conference object
著者 Kei, Majima

× Kei, Majima

WEKO 1016172

Kei, Majima

Search repository
Kei, Majima

× Kei, Majima

WEKO 1016173

en Kei, Majima

Search repository
抄録
内容記述タイプ Abstract
内容記述 Machine learning algorithms specialized for neural data have allowed the extraction of information encoded in the brain. As an example, in previous studies, the images human subjects see were reconstructed from their brain activity measured via functional magnetic resonance imaging (fMRI) [1]. However, the application of those machine learning algorithms to high-resolution fMRI data, which may become mainstream in the near future, is limited due to their high computational cost. To solve this problem, scalable machine learning algorithms are being designed by utilizing computational techniques developed in the field of quantum computation [2,3]. In this report, taking one of the popular statistical methods, principal component analysis (PCA), as an example, we show that machine algorithms can be approximated with the use of such quantum-inspired techniques. The computational time and approximation performance of quantum-inspired PCA are demonstrated. The main results of this report have been presented in a previous paper by the author [3].

References
1G. Shen, T. Horikawa, K. Majima, Y. Kamitani, PLOS Computational Biology, Volume 15, e1006633 (2019).
2E. Tang, Physical Review Letters, Volume 127, 060503 (2021).
3N. Koide-Majima, K. Majima, Neural Networks, Volume 135, 55–67 (2021).
会議概要(会議名, 開催地, 会期, 主催者等)
内容記述タイプ Other
内容記述 QUANTUM INNOVATION 2021
発表年月日
日付 2021-12-08
日付タイプ Issued
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:15:20.489690
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3