ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Estimation of X-ray Energy Spectrum of Cone-Beam Computed Tomography Scanner Using Percentage Depth Dose Measurements and Machine Learning Approach

https://repo.qst.go.jp/records/84057
https://repo.qst.go.jp/records/84057
cba02cac-e819-4886-9094-675a03a0249c
Item type 学術雑誌論文 / Journal Article(1)
公開日 2021-08-03
タイトル
タイトル Estimation of X-ray Energy Spectrum of Cone-Beam Computed Tomography Scanner Using Percentage Depth Dose Measurements and Machine Learning Approach
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Hasegawa, Yu

× Hasegawa, Yu

WEKO 1015164

Hasegawa, Yu

Search repository
Akihiro Haga

× Akihiro Haga

WEKO 1015165

Akihiro Haga

Search repository
Dousatsu Sakata

× Dousatsu Sakata

WEKO 1015166

Dousatsu Sakata

Search repository
Yuki Kanazawa

× Yuki Kanazawa

WEKO 1015167

Yuki Kanazawa

Search repository
Masahide Tominaga

× Masahide Tominaga

WEKO 1015168

Masahide Tominaga

Search repository
Motoharu Sasaki

× Motoharu Sasaki

WEKO 1015169

Motoharu Sasaki

Search repository
Toshikazu Imae

× Toshikazu Imae

WEKO 1015170

Toshikazu Imae

Search repository
Dousatsu, Sakata

× Dousatsu, Sakata

WEKO 1015171

en Dousatsu, Sakata

Search repository
抄録
内容記述タイプ Abstract
内容記述 This study presents, for the first time, a method to indirectly estimate the cone-beam computed tomography (CBCT) x-ray spectrum in the diagnostic energy range from the percentage depth dose (PDD) using machine learning (ML) algorithms. Assuming that the measured PDD is a weighted mean of monochromatic PDDs (mPDDs) resulting from monochromatic x-ray energies, mPDDs from the diagnostic energy range of 10 to 140 keV are simulated at 1 keV intervals by Monte Carlo (MC) calculation. Then, x-ray spectrum prediction models are constructed using two different ML approaches, namely the artificial neural network (ANN) based on a generative model and a maximum a posterior (MAP) model. Both models account for more than 80% of the x-ray photons obtained by full MC simulations in commercial CBCT systems. The present method is expected to be applied into a beam hardening reduction in CBCT reconstruction, CBCT dose calculation, and a material decomposition which require exact information on the x-ray energy spectrum.
書誌情報 Journal of the Physical Society of Japan

巻 90, 号 7, p. 074801, 発行日 2021-06
出版者
出版者 The Physical Society of Japan
ISSN
収録物識別子タイプ ISSN
収録物識別子 0031-9015
DOI
識別子タイプ DOI
関連識別子 10.7566/JPSJ.90.074801
関連サイト
識別子タイプ URI
関連識別子 https://journals.jps.jp/doi/full/10.7566/JPSJ.90.074801
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:16:04.377615
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3