WEKO3
アイテム
Estimation of X-ray Energy Spectrum of Cone-Beam Computed Tomography Scanner Using Percentage Depth Dose Measurements and Machine Learning Approach
https://repo.qst.go.jp/records/84057
https://repo.qst.go.jp/records/84057cba02cac-e819-4886-9094-675a03a0249c
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2021-08-03 | |||||
タイトル | ||||||
タイトル | Estimation of X-ray Energy Spectrum of Cone-Beam Computed Tomography Scanner Using Percentage Depth Dose Measurements and Machine Learning Approach | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
Hasegawa, Yu
× Hasegawa, Yu× Akihiro Haga× Dousatsu Sakata× Yuki Kanazawa× Masahide Tominaga× Motoharu Sasaki× Toshikazu Imae× Dousatsu, Sakata |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | This study presents, for the first time, a method to indirectly estimate the cone-beam computed tomography (CBCT) x-ray spectrum in the diagnostic energy range from the percentage depth dose (PDD) using machine learning (ML) algorithms. Assuming that the measured PDD is a weighted mean of monochromatic PDDs (mPDDs) resulting from monochromatic x-ray energies, mPDDs from the diagnostic energy range of 10 to 140 keV are simulated at 1 keV intervals by Monte Carlo (MC) calculation. Then, x-ray spectrum prediction models are constructed using two different ML approaches, namely the artificial neural network (ANN) based on a generative model and a maximum a posterior (MAP) model. Both models account for more than 80% of the x-ray photons obtained by full MC simulations in commercial CBCT systems. The present method is expected to be applied into a beam hardening reduction in CBCT reconstruction, CBCT dose calculation, and a material decomposition which require exact information on the x-ray energy spectrum. | |||||
書誌情報 |
Journal of the Physical Society of Japan 巻 90, 号 7, p. 074801, 発行日 2021-06 |
|||||
出版者 | ||||||
出版者 | The Physical Society of Japan | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 0031-9015 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | 10.7566/JPSJ.90.074801 | |||||
関連サイト | ||||||
識別子タイプ | URI | |||||
関連識別子 | https://journals.jps.jp/doi/full/10.7566/JPSJ.90.074801 |