ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Forward and backward locomotion patterns in C. elegans generated by a connectome-based model simulation

https://repo.qst.go.jp/records/84039
https://repo.qst.go.jp/records/84039
1054da67-74ff-42dd-9ce6-55e3a8901504
Item type 学術雑誌論文 / Journal Article(1)
公開日 2021-06-15
タイトル
タイトル Forward and backward locomotion patterns in C. elegans generated by a connectome-based model simulation
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Kazuma, Sakamoto (Hiroshima University)

× Kazuma, Sakamoto (Hiroshima University)

WEKO 1014960

Kazuma, Sakamoto (Hiroshima University)

Search repository
Zu, Soh (Hiroshima University)

× Zu, Soh (Hiroshima University)

WEKO 1014961

Zu, Soh (Hiroshima University)

Search repository
Suzuki, Michiyo

× Suzuki, Michiyo

WEKO 1014962

Suzuki, Michiyo

Search repository
Yuichi, Iino (The University of Tokyo)

× Yuichi, Iino (The University of Tokyo)

WEKO 1014963

Yuichi, Iino (The University of Tokyo)

Search repository
Toshio, Tsuji (Hiroshima University)

× Toshio, Tsuji (Hiroshima University)

WEKO 1014964

Toshio, Tsuji (Hiroshima University)

Search repository
Michiyo, Suzuki

× Michiyo, Suzuki

WEKO 1014965

en Michiyo, Suzuki

Search repository
抄録
内容記述タイプ Abstract
内容記述 Caenorhabditis elegans (C. elegans) can produce various motion patterns despite having only 69 motor neurons and 95 muscle cells. Previous studies successfully elucidate the connectome and role of the respective motor neuron classes related to movement. However, these models have not analyzed the distribution of the synaptic and gap connection weights. In this study, we examined whether a motor neuron and muscle network can generate oscillations for both forward and backward movement and analyzed the distribution of the trained synaptic and gap connection weights through a machine learning approach. This paper presents a connectome-based neural network model consisting of motor neurons of classes A, B, D, AS, and muscle, considering both synaptic and gap connections. A supervised learning method called backpropagation through time was adapted to train the connection parameters by feeding teacher data composed of the command neuron input and muscle cell activation. Simulation results confirmed that the motor neuron circuit could generate oscillations with different phase patterns corresponding to forward and backward movement, and could be switched at arbitrary times according to the binary inputs simulating the output of command neurons. Subsequently, we confirmed that the trained synaptic and gap connection weights followed a Boltzmann-type distribution. It should be noted that the proposed model can be trained to reproduce the activity patterns measured for an animal (HRB4 strain). Therefore, the supervised learning approach adopted in this study may allow further analysis of complex activity patterns associated with movements.
書誌情報 Scientific Reports

巻 11, p. 13737, 発行日 2021-07
出版者
出版者 Springer Nature
ISSN
収録物識別子タイプ ISSN
収録物識別子 2045-2322
DOI
識別子タイプ DOI
関連識別子 10.1038/s41598-021-92690-2
関連サイト
識別子タイプ URI
関連識別子 https://www.nature.com/articles/s41598-021-92690-2
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:16:15.907888
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3