ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Denoising application for electron spectrometer in laser-driven ion acceleration using a Simulation-supervised Learning based CDAE

https://repo.qst.go.jp/records/83794
https://repo.qst.go.jp/records/83794
0c8d2b9a-c59d-47c1-bdd8-5c29699b6a1a
Item type 学術雑誌論文 / Journal Article(1)
公開日 2021-01-07
タイトル
タイトル Denoising application for electron spectrometer in laser-driven ion acceleration using a Simulation-supervised Learning based CDAE
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Miyatake, Tatsuhiko

× Miyatake, Tatsuhiko

WEKO 1010470

Miyatake, Tatsuhiko

Search repository
Shiokawa, Keiichiro

× Shiokawa, Keiichiro

WEKO 1010471

Shiokawa, Keiichiro

Search repository
Sakaki, Hironao

× Sakaki, Hironao

WEKO 1010472

Sakaki, Hironao

Search repository
Dover, NicholasPeter

× Dover, NicholasPeter

WEKO 1010473

Dover, NicholasPeter

Search repository
Nishiuchi, Mamiko

× Nishiuchi, Mamiko

WEKO 1010474

Nishiuchi, Mamiko

Search repository
Lowe, HazelFrances

× Lowe, HazelFrances

WEKO 1010475

Lowe, HazelFrances

Search repository
Kondo, Kotaro

× Kondo, Kotaro

WEKO 1010476

Kondo, Kotaro

Search repository
Kon, Akira

× Kon, Akira

WEKO 1010477

Kon, Akira

Search repository
Kando, Masaki

× Kando, Masaki

WEKO 1010478

Kando, Masaki

Search repository
Kondo, Kiminori

× Kondo, Kiminori

WEKO 1010479

Kondo, Kiminori

Search repository
Tatsuhiko, Miyatake

× Tatsuhiko, Miyatake

WEKO 1010480

en Tatsuhiko, Miyatake

Search repository
Hironao, Sakaki

× Hironao, Sakaki

WEKO 1010481

en Hironao, Sakaki

Search repository
Dover, NicholasPeter

× Dover, NicholasPeter

WEKO 1010482

en Dover, NicholasPeter

Search repository
Mamiko, Nishiuchi

× Mamiko, Nishiuchi

WEKO 1010483

en Mamiko, Nishiuchi

Search repository
Lowe, HazelFrances

× Lowe, HazelFrances

WEKO 1010484

en Lowe, HazelFrances

Search repository
Kotaro, Kondo

× Kotaro, Kondo

WEKO 1010485

en Kotaro, Kondo

Search repository
Akira, Kon

× Akira, Kon

WEKO 1010486

en Akira, Kon

Search repository
Masaki, Kando

× Masaki, Kando

WEKO 1010487

en Masaki, Kando

Search repository
Kiminori, Kondo

× Kiminori, Kondo

WEKO 1010488

en Kiminori, Kondo

Search repository
抄録
内容記述タイプ Abstract
内容記述 Real experimental measurements in high-radiation environments often suffer from a high-flux of background noise which can limit the retrieval of the underlying signal. It is important to have an effective method to properly remove unwanted noise from measurement images. Machine learning methods using a multilayer neural network (deep learning) have been shown to be effective for extracting features from images. However, the efficacy of such methods is often restricted by a lack of high-quality training data. Here, we demonstrate the application for noise removal by performing simulations to generate virtual training data for a denoising deep-learning model. We first apply the model to simulations of an electron spectrometer measuring the energy spectra of electron beams accelerated from the interaction of an intense laser with a thin foil. By considering the chi-squared test and image test-indexes, namely the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), we found our method to be highly effective. We then used the trained model to denoise real experimental measurements of the electron beam spectra from experiments performed at a state-of-the-art high-power laser facility. This application is offered as a new method for effectively removing noise from experimental data in high-flux radiation background environment.
書誌情報 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

巻 999, p. 165227, 発行日 2021-05
ISSN
収録物識別子タイプ ISSN
収録物識別子 0168-9002
DOI
識別子タイプ DOI
関連識別子 10.1016/j.nima.2021.165227
関連サイト
識別子タイプ URI
関連識別子 https://www.sciencedirect.com/science/article/pii/S0168900221002114
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:21:19.565629
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3