WEKO3
アイテム
Automated stopping criterion for spectral measurements with active learning
https://repo.qst.go.jp/records/83449
https://repo.qst.go.jp/records/83449c96025bd-e3b2-4e51-a242-40cf74833227
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2021-07-21 | |||||
タイトル | ||||||
タイトル | Automated stopping criterion for spectral measurements with active learning | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
Tetsuro, Ueno
× Tetsuro, Ueno× Hideaki, Ishibashi× Hideitsu, Hino× Kanta, Ono× Tetsuro, Ueno |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | The automated stopping of a spectral measurement with active learning is proposed. The optimal stopping of the measurement is realised with a stopping criterion based on the upper bound of the posterior average of the generalisation error of the Gaussian process regression. It is revealed that the automated stopping criterion of the spectral measurement gives an approximated X-ray absorption spectrum with a sufficient accuracy and reduced data size. The proposed method is not only a proof-of- concept of the optimal stopping problem in active learning but also the key to enhancing the efficiency of spectral measurements for high-throughput experiments in the era of materials informatics. | |||||
書誌情報 |
npj Computational Materials 巻 7, p. 139, 発行日 2021-08 |
|||||
出版者 | ||||||
出版者 | Springer Nature | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 2057-3960 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | 10.1038/s41524-021-00606-5 | |||||
関連サイト | ||||||
識別子タイプ | DOI | |||||
関連識別子 | https://doi.org/10.1038/s41524-021-00606-5 |