ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学会発表・講演等
  2. 口頭発表

A framework for leveraging multi-rater data in brain decoding analysis: Prediction of evaluation drawn from population data using sparse probit regression

https://repo.qst.go.jp/records/83361
https://repo.qst.go.jp/records/83361
981dc0e7-7d55-406a-82ab-b27597a626c5
名前 / ファイル ライセンス アクション
3f9be0b2abe72bf77f6bcdedcc16c909.pdf 研究会抄録 (76.4 kB)
Item type 会議発表用資料 / Presentation(1)
公開日 2021-07-14
タイトル
タイトル A framework for leveraging multi-rater data in brain decoding analysis: Prediction of evaluation drawn from population data using sparse probit regression
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_c94f
資源タイプ conference object
著者 Vafaei, Shirin

× Vafaei, Shirin

WEKO 1002185

Vafaei, Shirin

Search repository
Yamane, Hiroaki

× Yamane, Hiroaki

WEKO 1002186

Yamane, Hiroaki

Search repository
Fukuma, Ryohei

× Fukuma, Ryohei

WEKO 1002187

Fukuma, Ryohei

Search repository
Noriaki, Yahata

× Noriaki, Yahata

WEKO 1002188

Noriaki, Yahata

Search repository
Yanagisawa, Takufumi

× Yanagisawa, Takufumi

WEKO 1002189

Yanagisawa, Takufumi

Search repository
Kei, Majima

× Kei, Majima

WEKO 1002190

Kei, Majima

Search repository
Noriaki, Yahata

× Noriaki, Yahata

WEKO 1002191

en Noriaki, Yahata

Search repository
Kei, Majima

× Kei, Majima

WEKO 1002192

en Kei, Majima

Search repository
抄録
内容記述タイプ Abstract
内容記述 Introduction: Using stimuli (e.g., images, videos, products) labeled by a number of raters has recently become common in brain decoding analysis, where subjective emotion/impression for stimuli felt by the population is predicted from brain responses. However, there remains no established method for constructing a decoder using such multi-rater labels. In previous studies, the variability across multiple raters was assumed to reflect noise, and the answers for a binary judgment were averaged across raters. Then, the average scores (i.e., empirical probabilities) for individual stimuli were predicted using standard regression methods. While this procedure is a simple and popular approach, it is not appropriate because most of these regression methods ignore the fact that probability is the variable to be predicted. To address this in an appropriate manner, we present a new framework in this study.
Methods: Here, we assume that individual answers for a binary judgment about a stimulus follow a Bernoulli distribution. We then predicted the probability of positive answers from the human functional magnetic resonance imaging (fMRI) response to the stimulus using probit regression. We also introduced sparse regularization into probit regression (sparse probit regression) to prevent overfitting.
Results: In both simulation and real fMRI data analysis, sparse probit regression more accurately predicted the probabilities of positive answers for individual stimuli than probit regression without sparse regularization, indicating that sparseness results in better decoding performance. Sparse probit regression also outperformed linear regression using the same type of sparse regularization, reflecting the advantage of our appropriate treatment of probability.
Discussion & Conclusion: Our results suggest that our framework using sparse probit regression provides an effective method for the population prediction of emotion/impression assessment based on brain activity.
会議概要(会議名, 開催地, 会期, 主催者等)
内容記述タイプ Other
内容記述 第5回ヒト脳イメージング研究会
発表年月日
日付 2021-09-18
日付タイプ Issued
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:29:53.960177
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3