ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Ion temperature gradient control using reinforcement learning technique

https://repo.qst.go.jp/records/82462
https://repo.qst.go.jp/records/82462
f78e0b99-d241-481a-8456-b778355e80b1
Item type 学術雑誌論文 / Journal Article(1)
公開日 2021-03-25
タイトル
タイトル Ion temperature gradient control using reinforcement learning technique
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Takuma, Wakatsuki

× Takuma, Wakatsuki

WEKO 1015443

Takuma, Wakatsuki

Search repository
Takahiro, Suzuki

× Takahiro, Suzuki

WEKO 1015444

Takahiro, Suzuki

Search repository
Naoyuki, Oyama

× Naoyuki, Oyama

WEKO 1015445

Naoyuki, Oyama

Search repository
Nobuhiko, Hayashi

× Nobuhiko, Hayashi

WEKO 1015446

Nobuhiko, Hayashi

Search repository
Takuma, Wakatsuki

× Takuma, Wakatsuki

WEKO 1015447

en Takuma, Wakatsuki

Search repository
Takahiro, Suzuki

× Takahiro, Suzuki

WEKO 1015448

en Takahiro, Suzuki

Search repository
Naoyuki, Oyama

× Naoyuki, Oyama

WEKO 1015449

en Naoyuki, Oyama

Search repository
Nobuhiko, Hayashi

× Nobuhiko, Hayashi

WEKO 1015450

en Nobuhiko, Hayashi

Search repository
抄録
内容記述タイプ Abstract
内容記述 Plasma with an internal transport barrier (ITB) is desirable for a steady-state tokamak reactor because of its high confinement quality and high bootstrap current fraction. However, the local pressure gradient tends to be steep and the plasma often becomes unstable. In this study, an ion temperature gradient control system based on neutral beam injection (NBI) is developed using the reinforcement learning technique. The response characteristics of an ion temperature gradient to NBI are non-linear and sensitive to experimental conditions, which makes it difficult to develop a robust control system. Our control system is trained for plasmas with a wide range of ITB strengths. Using the reinforcement learning technique, the system acquires a robust control feature through several thousand iterations of trial and error in an integrated transport simulation hosted by TOPICS. The control system is composed of neural networks (NNs) whose input variables are the ion temperature gradient, the current NBI power, and the NBI powers for several previous control time steps. The trained system can determine a control output which is suitable for the response characteristics inferred from the input variables. The trained control system is tested in the TOPICS simulation using plasma models based on two experimental plasmas of JT-60U with different ITB strengths. It is shown that the ion temperature gradient can be appropriately controlled for both plasmas, which supports the expectation that this system is applicable to real experiments.
書誌情報 Nuclear Fusion

巻 61, 号 4, p. 046036, 発行日 2021-03
出版者
出版者 IoP Publishing, International Atomic Energy Agency, EURATOM
ISSN
収録物識別子タイプ ISSN
収録物識別子 0029-5515
DOI
識別子タイプ DOI
関連識別子 10.1088/1741-4326/abe68d
関連サイト
識別子タイプ DOI
関連識別子 https://doi.org/10.1088/1741-4326/abe68d
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:15:50.404968
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3