ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Quantum-inspired canonical correlation analysis for exponentially large dimensional data.

https://repo.qst.go.jp/records/81693
https://repo.qst.go.jp/records/81693
4e766016-5b73-42fe-8c4f-32652bb0d5d6
Item type 学術雑誌論文 / Journal Article(1)
公開日 2021-01-18
タイトル
タイトル Quantum-inspired canonical correlation analysis for exponentially large dimensional data.
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Naoko, Koide-Majima

× Naoko, Koide-Majima

WEKO 1011045

Naoko, Koide-Majima

Search repository
Majima, Kei

× Majima, Kei

WEKO 1011046

Majima, Kei

Search repository
Kei, Majima

× Kei, Majima

WEKO 1011047

en Kei, Majima

Search repository
抄録
内容記述タイプ Abstract
内容記述 Canonical correlation analysis (CCA) serves to identify statistical dependencies between pairs of multivariate data. However, its application to high-dimensional data is limited due to considerable computational complexity. As an alternative to the conventional CCA approach that requires polynomial computational time, we propose an algorithm that approximates CCA using quantum-inspired computations with computational time proportional to the logarithm of the input dimensionality. The computational efficiency and performance of the proposed quantum-inspired CCA (qiCCA) algorithm are experimentally evaluated on synthetic and real datasets. Furthermore, the fast computation provided by qiCCA allows directly applying CCA even after nonlinearly mapping raw input data into high-dimensional spaces. The conducted experiments demonstrate that, as a result of mapping raw input data into the high-dimensional spaces with the use of second-order monomials, qiCCA extracts more correlations compared with the linear CCA and achieves comparable performance with state-of-the-art nonlinear variants of CCA on several datasets. These results confirm the appropriateness of the proposed qiCCA and the high potential of quantum-inspired computations in analyzing high-dimensional data.
書誌情報 Neural networks : the official journal of the International Neural Network Society

巻 135, p. 55-67, 発行日 2020-12
ISSN
収録物識別子タイプ ISSN
収録物識別子 0893-6080
PubMed番号
識別子タイプ PMID
関連識別子 33348241
DOI
識別子タイプ DOI
関連識別子 10.1016/j.neunet.2020.11.019
関連サイト
識別子タイプ URI
関連識別子 https://www.sciencedirect.com/science/article/pii/S0893608020304172
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:20:47.011938
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3