WEKO3
アイテム
G9a is involved in the regulation of cranial bone formation through activation of Runx2 function during development
https://repo.qst.go.jp/records/80603
https://repo.qst.go.jp/records/806035da5fec5-19f2-4099-a3bc-1592e963d678
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2020-09-30 | |||||
タイトル | ||||||
タイトル | G9a is involved in the regulation of cranial bone formation through activation of Runx2 function during development | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
Ideno, Hisashi
× Ideno, Hisashi× Nakashima, Kazuhisa× Komatsu, Koichiro× Araki, Ryoko× Abe, Masumi× Arai, Yoshinori× Kimura, Hiroshi× Shinkai, Yoichi× Tachibana, Makoto× Nifuji, Akira× Hisashi, Ideno× Ryoko, Araki× Masumi, Abe× Akira, Nifuji |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | The methyltransferase G9a was originally isolated as a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9 (H3K9) to a dimethylated state (H3K9me2). Recent studies have revealed that G9a has multiple functions in various cells, including osteoblasts. Here, we investigated G9a function during cranial bone formation. Crossing Sox9-cre with G9aflox/flox (fl/fl) mice generated conditional knockout mice lacking G9a expression in Sox9-positive neural crest-derived bone cells. Sox9-Cre/G9afl/fl mice showed severe hypo-mineralization of cranial vault bones, including defects in nasal, frontal, and parietal bones with opened fontanelles. Cell proliferation was inhibited in G9a-deleted calvarial bone tissues. Expression levels of bone marker genes, i.e., alkaline phosphatase and osteocalcin, were suppressed, whereas Runx2 expression was not significantly decreased in those tissues. In vitro experiments using G9a-deleted calvarial osteoblasts showed decreased cell proliferation after G9a deletion. In G9a-deleted osteoblasts, expression levels of fibroblast growth factor receptors and several cyclins were suppressed. Moreover, the expression of bone marker genes was decreased, whereas Runx2 expression was not altered by G9a deletion in vitro. G9a enhanced the transcriptional activity of Runx2, whereas siRNA targeting G9a inhibited the transcriptional activity of Runx2 in C3H10T1/2 mesenchymal cells. We confirmed the direct association of endogenous Runx2 with G9a. Chromatin immunoprecipitation experiments showed that G9a bound to Runx2-target regions in promoters in primary osteoblasts. Furthermore, Runx2 binding to the osteocalcin promoter was abrogated in G9-deleted osteoblasts. These results suggest that G9a regulates proliferation and differentiation of cranial bone cells through binding to and activating Runx2. | |||||
書誌情報 |
Bone 巻 137, p. 115332, 発行日 2020-08 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 8756-3282 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | 10.1016/j.bone.2020.115332 | |||||
関連サイト | ||||||
識別子タイプ | URI | |||||
関連識別子 | https://www.sciencedirect.com/science/article/abs/pii/S8756328220301125?via%3Dihub#! |