ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

A machine learning-based real-time tumor tracking system for fluoroscopic gating of lung radiotherapy

https://repo.qst.go.jp/records/79941
https://repo.qst.go.jp/records/79941
dbee6286-2c34-4678-8ca4-aab1cb50ff8a
Item type 学術雑誌論文 / Journal Article(1)
公開日 2020-03-01
タイトル
タイトル A machine learning-based real-time tumor tracking system for fluoroscopic gating of lung radiotherapy
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Sakata, Yukinobu

× Sakata, Yukinobu

WEKO 867844

Sakata, Yukinobu

Search repository
Hirai, Ryusuke

× Hirai, Ryusuke

WEKO 867845

Hirai, Ryusuke

Search repository
Mori, Shinichiro

× Mori, Shinichiro

WEKO 867846

Mori, Shinichiro

Search repository
Sakata, Yukinobu

× Sakata, Yukinobu

WEKO 867847

en Sakata, Yukinobu

Search repository
Hirai, Ryusuke

× Hirai, Ryusuke

WEKO 867848

en Hirai, Ryusuke

Search repository
Mori, Shinichiro

× Mori, Shinichiro

WEKO 867849

en Mori, Shinichiro

Search repository
抄録
内容記述タイプ Abstract
内容記述 To improve respiratory-gated radiotherapy accuracy, we developed a machine learning approach for markerless tumor tracking and evaluated it using lung cancer patient data. Digitally reconstructed radiography (DRR) datasets were generated using planning 4DCT data. Tumor positions were selected on respective DRR images to place the GTV center of gravity in the center of each DRR. DRR subimages around the tumor regions were cropped so that the subimage size was defined by tumor size. Training data were then classified into two groups: positive (including tumor) and negative (not including tumor) samples. Machine learning parameters were optimized by the extremely randomized tree method. For the tracking stage, a machine learning algorithm was generated to provide a tumor likelihood map using fluoroscopic images. Prior probability tumor positions were also calculated using the previous two frames. Tumor position was then estimated by calculating maximum probability on the tumor likelihood map and prior probability tumor positions. We acquired treatment planning 4DCT images in eight patients. Digital fluoroscopic imaging systems on either side of the vertical irradiation port allowed fluoroscopic image acquisition during treatment delivery. Each fluoroscopic dataset was acquired at 15 frames per second. We evaluated the tracking accuracy and computation times. Tracking positional accuracy averaged over all patients was 1.03 ± 0.34 mm (mean ± standard deviation, Euclidean distance) and 1.76 ± 0.71 mm (95th percentile). Computation time was 28.66 ± 1.89 ms/frame averaged over all frames. Our markerless algorithm successfully estimated tumor position in real time.
書誌情報 Physics in Medicine & Biology

巻 65, 号 8, p. 1-13, 発行日 2020-04
出版者
出版者 IOP Publishing
ISSN
収録物識別子タイプ ISSN
収録物識別子 0031-9155
DOI
識別子タイプ DOI
関連識別子 10.1088/1361-6560/ab79c5
関連サイト
識別子タイプ URI
関連識別子 https://iopscience.iop.org/article/10.1088/1361-6560/ab79c5
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 18:07:48.904746
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3