ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学会発表・講演等
  2. ポスター発表

Denoising technique of an in-line electron energy spectrometer based on the feature filtering

https://repo.qst.go.jp/records/79937
https://repo.qst.go.jp/records/79937
4685817d-7ce9-4def-95c3-c5d2f27e9269
Item type 会議発表用資料 / Presentation(1)
公開日 2020-05-08
タイトル
タイトル Denoising technique of an in-line electron energy spectrometer based on the feature filtering
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_c94f
資源タイプ conference object
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Sakaki, Hironao

× Sakaki, Hironao

WEKO 866779

Sakaki, Hironao

Search repository
Shiokawa, Keiichiro

× Shiokawa, Keiichiro

WEKO 866780

Shiokawa, Keiichiro

Search repository
Miyatake, Tatsuhiko

× Miyatake, Tatsuhiko

WEKO 866781

Miyatake, Tatsuhiko

Search repository
Nishiuchi, Mamiko

× Nishiuchi, Mamiko

WEKO 866782

Nishiuchi, Mamiko

Search repository
Kondo, Kotaro

× Kondo, Kotaro

WEKO 866783

Kondo, Kotaro

Search repository
Dover, NicholasPeter

× Dover, NicholasPeter

WEKO 866784

Dover, NicholasPeter

Search repository
Lowe, HazelFrances

× Lowe, HazelFrances

WEKO 866785

Lowe, HazelFrances

Search repository
Kon, Akira

× Kon, Akira

WEKO 866786

Kon, Akira

Search repository
Kando, Masaki

× Kando, Masaki

WEKO 866787

Kando, Masaki

Search repository
Watanabe, Yukinobu

× Watanabe, Yukinobu

WEKO 866788

Watanabe, Yukinobu

Search repository
Sakaki, Hironao

× Sakaki, Hironao

WEKO 866789

en Sakaki, Hironao

Search repository
Shiokawa, Keiichiro

× Shiokawa, Keiichiro

WEKO 866790

en Shiokawa, Keiichiro

Search repository
Miyatake, Tatsuhiko

× Miyatake, Tatsuhiko

WEKO 866791

en Miyatake, Tatsuhiko

Search repository
Nishiuchi, Mamiko

× Nishiuchi, Mamiko

WEKO 866792

en Nishiuchi, Mamiko

Search repository
Kondo, Kotaro

× Kondo, Kotaro

WEKO 866793

en Kondo, Kotaro

Search repository
Dover, NicholasPeter

× Dover, NicholasPeter

WEKO 866794

en Dover, NicholasPeter

Search repository
Lowe, HazelFrances

× Lowe, HazelFrances

WEKO 866795

en Lowe, HazelFrances

Search repository
Kon, Akira

× Kon, Akira

WEKO 866796

en Kon, Akira

Search repository
Kando, Masaki

× Kando, Masaki

WEKO 866797

en Kando, Masaki

Search repository
Watanabe, Yukinobu

× Watanabe, Yukinobu

WEKO 866798

en Watanabe, Yukinobu

Search repository
抄録
内容記述タイプ Abstract
内容記述 On the experiment for laser-driven ion acceleration at J-KAREN-P[1] with pulse repetition rates of 0.1 Hz, the angular distribution of electron spectrum is diagnosed by multiple electron spectrometers. The electron spectrometer with comprising a bending magnet, a CCD camera and a scintillator is placed in the main vacuum chamber. When the laser focus on the target, many radiations generated in the main vacuum chamber, therefore, CCD camera is exposed to the radiation and distorted the measured images. We need to develop a new technique for removing noise (denoising) from a noisy image and recovering a true measurement image.
In recent years, with the development of machine learning methods such as Deep-Learning, "Deep-Learning based Feature filtering" that uses a feature value of an image obtained from machine learning as a base and reproduces a true image from a noisy image is developed[2]. This filtering technique is a new technique of reconstructing a denoising image by separating noise and true data with the feature value of the true-image data. This technique expectes to be effective for the denoising of radiation. In order to demonstrate the feature filtering method, we make a pseudo-measured image generated from an ideal simulation of electron spectroscopy (using as the true-image data), and the noise-image data which make from the measured radiation noise convoluted with the pseudo-measured image (using as the noise-image data). Then, the ideal feature base is obtained by machine learning from the true-image data and the noise-image data, the feature filtering of the actually measured data is verified by using these the ideal feature base. In this report, we show the denoising performance of the feature filtering compared with "median filter" which is generally used for filtering of radiation noise.
会議概要(会議名, 開催地, 会期, 主催者等)
内容記述タイプ Other
内容記述 HEDS2020
発表年月日
日付 2020-04-20
日付タイプ Issued
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 18:08:12.939632
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3