ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

The Utility of a Convolutional Neural Network for Generating a Myelin Volume Index Map from Rapid Simultaneous Relaxometry Imaging.

https://repo.qst.go.jp/records/79643
https://repo.qst.go.jp/records/79643
dc9d6faa-05fc-4d81-8166-88875c73d505
Item type 学術雑誌論文 / Journal Article(1)
公開日 2020-03-25
タイトル
タイトル The Utility of a Convolutional Neural Network for Generating a Myelin Volume Index Map from Rapid Simultaneous Relaxometry Imaging.
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Tachibana, Yasuhiko

× Tachibana, Yasuhiko

WEKO 1005936

Tachibana, Yasuhiko

Search repository
Hagiwara, Akifumi

× Hagiwara, Akifumi

WEKO 1005937

Hagiwara, Akifumi

Search repository
Hori, Masaaki

× Hori, Masaaki

WEKO 1005938

Hori, Masaaki

Search repository
Kershaw, Jeffrey

× Kershaw, Jeffrey

WEKO 1005939

Kershaw, Jeffrey

Search repository
Nakazawa, Misaki

× Nakazawa, Misaki

WEKO 1005940

Nakazawa, Misaki

Search repository
Omatsu, Tokuhiko

× Omatsu, Tokuhiko

WEKO 1005941

Omatsu, Tokuhiko

Search repository
Kishimoto, Riwa

× Kishimoto, Riwa

WEKO 1005942

Kishimoto, Riwa

Search repository
Yokoyama, Kazumasa

× Yokoyama, Kazumasa

WEKO 1005943

Yokoyama, Kazumasa

Search repository
Hattori, Nobutaka

× Hattori, Nobutaka

WEKO 1005944

Hattori, Nobutaka

Search repository
Aoki, Shigeki

× Aoki, Shigeki

WEKO 1005945

Aoki, Shigeki

Search repository
Higashi, Tatsuya

× Higashi, Tatsuya

WEKO 1005946

Higashi, Tatsuya

Search repository
Obata, Takayuki

× Obata, Takayuki

WEKO 1005947

Obata, Takayuki

Search repository
Yasuhiko, Tachibana

× Yasuhiko, Tachibana

WEKO 1005948

en Yasuhiko, Tachibana

Search repository
Kershaw, Jeffrey

× Kershaw, Jeffrey

WEKO 1005949

en Kershaw, Jeffrey

Search repository
Tokuhiko, Omatsu

× Tokuhiko, Omatsu

WEKO 1005950

en Tokuhiko, Omatsu

Search repository
Riwa, Kishimoto

× Riwa, Kishimoto

WEKO 1005951

en Riwa, Kishimoto

Search repository
Tatsuya, Higashi

× Tatsuya, Higashi

WEKO 1005952

en Tatsuya, Higashi

Search repository
Takayuki, Obata

× Takayuki, Obata

WEKO 1005953

en Takayuki, Obata

Search repository
抄録
内容記述タイプ Abstract
内容記述 PURPOSE:
A current algorithm to obtain a synthetic myelin volume fraction map (SyMVF) from rapid simultaneous relaxometry imaging (RSRI) has a potential problem, that it does not incorporate information from surrounding pixels. The purpose of this study was to develop a method that utilizes a convolutional neural network (CNN) to overcome this problem.

METHODS:
RSRI and magnetization transfer images from 20 healthy volunteers were included. A CNN was trained to reconstruct RSRI-related metric maps into a myelin volume-related index (generated myelin volume index: GenMVI) map using the MVI map calculated from magnetization transfer images (MTMVI) as reference. The SyMVF and GenMVI maps were statistically compared by testing how well they correlated with the MTMVI map. The correlations were evaluated based on: (i) averaged values obtained from 164 atlas-based ROIs, and (ii) pixel-based comparison for ROIs defined in four different tissue types (cortical and subcortical gray matter, white matter, and whole brain).

RESULTS:
For atlas-based ROIs, the overall correlation with the MTMVI map was higher for the GenMVI map than for the SyMVF map. In the pixel-based comparison, correlation with the MTMVI map was stronger for the GenMVI map than for the SyMVF map, and the difference in the distribution for the volunteers was significant (Wilcoxon sign-rank test, P < 0.001) in all tissue types.

CONCLUSION:
The proposed method is useful, as it can incorporate more specific information about local tissue properties than the existing method. However, clinical validation is necessary.
書誌情報 Magnetic Resonance in Medical Sciences

巻 19, 号 4, p. 324-332, 発行日 2020-03
出版者
出版者 日本磁気共鳴医学会
ISSN
収録物識別子タイプ ISSN
収録物識別子 1347-3182
PubMed番号
識別子タイプ PMID
関連識別子 31902906
DOI
識別子タイプ DOI
関連識別子 10.2463/mrms.mp.2019-0075
関連サイト
識別子タイプ URI
関連識別子 https://www.jstage.jst.go.jp/article/mrms/advpub/0/advpub_mp.2019-0075/_article/-char/ja/
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:26:19.487543
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3