ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Real-time markerless tumour tracking with patient-specific deep learning using a personalized data generation strategy: Proof of concept by phantom study

https://repo.qst.go.jp/records/79593
https://repo.qst.go.jp/records/79593
330b9ab0-c1aa-4182-b660-1b0f168e8d39
Item type 学術雑誌論文 / Journal Article(1)
公開日 2020-02-10
タイトル
タイトル Real-time markerless tumour tracking with patient-specific deep learning using a personalized data generation strategy: Proof of concept by phantom study
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Takahashi, Wataru

× Takahashi, Wataru

WEKO 866904

Takahashi, Wataru

Search repository
Oshikawa, Shota

× Oshikawa, Shota

WEKO 866905

Oshikawa, Shota

Search repository
Mori, Shinichiro

× Mori, Shinichiro

WEKO 866906

Mori, Shinichiro

Search repository
Mori, Shinichiro

× Mori, Shinichiro

WEKO 866907

en Mori, Shinichiro

Search repository
抄録
内容記述タイプ Abstract
内容記述 Purpose
Large amounts of subject data are required for training data sets in deep learning (DL) for medical imaging. Collection of these data is crucial, but some collection strategies are hampered by the heterogeneity of subject data. For real-time markerless tumour tracking, we propose a different approach which uses patient-specific DL using a personalized data generation strategy.
Methods
We developed lung tumour tracking for radiotherapy using a convolutional neural network trained for each patient’s lesion, avoiding the need for a large data set by using multiple digitally reconstructed radiographs (DRRs) generated from each patient’s treatment planning 4D-CT. We trained tumour-bone differentiation using huge training DRRs generated with different projection geometries to simulate tumour motion. We solved the problem of using DRRs for training and X-ray images for tracking by using the training DRRs with random contrast transformation and random noise addition. These solutions also double as data augmentation.
Results
We defined adequate target coverage (TC) as the % frames satisfying < 1 mm tracking accuracy of the isocentre. In a simulation study, we achieved 100% TC in 3 cm spherical and 1.5 × 2.25 × 3 cm ovoid masses. In a phantom study, we achieved 100% and 94.7% TC in 3- and 2-cm spherical masses, respectively. This required 32.5 ms/frame (30.8 fps) real-time processing.
Conclusions
We proposed and validated a real-time markerless tumour tracking framework based on patient-specific DL with a personalized data generation strategy.
Advances in Knowledge
Using DL with personalized data generation is an efficient method for real-time tumour tracking.
書誌情報 British Journal of Radiology

巻 93, 号 1109, 発行日 2020-03
ISSN
収録物識別子タイプ ISSN
収録物識別子 0007-1285
DOI
識別子タイプ DOI
関連識別子 10.1259/bjr.20190420
関連サイト
識別子タイプ URI
関連識別子 https://www.birpublications.org/doi/10.1259/bjr.20190420
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 18:08:09.042284
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3