ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Overlapping communications in gyrokinetic codes on accelerator-based platforms

https://repo.qst.go.jp/records/78190
https://repo.qst.go.jp/records/78190
0a890904-eec8-4870-8ef0-7330c3b96eae
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-12-23
タイトル
タイトル Overlapping communications in gyrokinetic codes on accelerator-based platforms
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Asahi, Yuuichi

× Asahi, Yuuichi

WEKO 1001134

Asahi, Yuuichi

Search repository
Latu, Guillaume

× Latu, Guillaume

WEKO 1001135

Latu, Guillaume

Search repository
Bigot, Julien

× Bigot, Julien

WEKO 1001136

Bigot, Julien

Search repository
Maeyama, Shinya

× Maeyama, Shinya

WEKO 1001137

Maeyama, Shinya

Search repository
Grandgirard, Virginie

× Grandgirard, Virginie

WEKO 1001138

Grandgirard, Virginie

Search repository
Idomura, Yasuhiro

× Idomura, Yasuhiro

WEKO 1001139

Idomura, Yasuhiro

Search repository
Yuuichi, Asahi

× Yuuichi, Asahi

WEKO 1001140

en Yuuichi, Asahi

Search repository
抄録
内容記述タイプ Abstract
内容記述 Communication and computation overlapping techniques have been introduced in the five‐dimensional gyrokinetic codes GYSELA and GKV. In order to anticipate some of the exa‐scale requirements, these codes were ported to the modern accelerators, Xeon Phi KNL and Tesla P 100 GPU. On accelerators, a serial version of GYSELA on KNL and GKV on GPU are respectively 1.3× and 7.4× faster than those on a single Skylake processor (a single socket). For the scalability, we have measured GYSELA performance on Xeon Phi KNL from 16 to 512 KNLs (1024 to 32k cores) and GKV performance on Tesla P 100 GPU from 32 to 256 GPUs. In their parallel versions, transpose communication in semi‐Lagrangian solver in GYSELA or Convolution kernel in GKV turned out to be a main bottleneck. This indicates that in the exa‐scale, the network constraints would be critical. In order to mitigate the communication costs, the pipeline and task‐based overlapping techniques have been implemented in these codes. The GYSELA 2D advection solver has achieved a 33% to 92% speed up, and the GKV 2D convolution kernel has achieved a factor of 2 speed up with pipelining. The task‐based approach gives 11% to 82% performance gain in the derivative computation of the electrostatic potential in GYSELA. We have shown that the pipeline‐based approach is applicable with the presence of symmetry, while the task‐based approach can be applicable to more general situations.
書誌情報 Concurrency and Computation: Practice and Experience

巻 32, 号 5, 発行日 2019-11
出版者
出版者 Wiley
ISSN
収録物識別子タイプ ISSN
収録物識別子 1532-0626
DOI
識別子タイプ DOI
関連識別子 10.1002/cpe.5551
関連サイト
識別子タイプ URI
関連識別子 https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5551
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:30:52.389874
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3