WEKO3
アイテム
High-power gyrotrons for electron cyclotron heating and current drive
https://repo.qst.go.jp/records/77570
https://repo.qst.go.jp/records/775701596d658-6b97-4c74-808c-887184435f53
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2019-11-21 | |||||
タイトル | ||||||
タイトル | High-power gyrotrons for electron cyclotron heating and current drive | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
Thumm, M.K.A.
× Thumm, M.K.A.× Denisov, G.G.× Sakamoto, Keishi× Tran, M.Q.× Keishi, Sakamoto |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | In many tokamak and stellarator experiments around the globe that are investigating energy production via controlled thermonuclear fusion, electron cyclotron heating and current drive (ECH&CD) are used for plasma start-up, heating, non-inductive current drive and magnetohydrodynamic stability control. ECH will be the first auxiliary heating method used on ITER. Megawatt-class, continuous wave gyrotrons are employed as high-power millimeter (mm)-wave sources. The present review reports on the worldwide state-of-the-art of highpower gyrotrons. Their successful development during recent years changed ECH from a minor to a major heating method. After a general introduction of the various functions of ECH&CD in fusion physics, especially for ITER, section 2 will explain the fast-wave gyrotron interaction principle. Section 3 discusses innovations on the components of modern long-pulse fusion gyrotrons (magnetron injection electron gun, beam tunnel, cavity, quasi-optical output coupler, synthetic diamond output window, single-stage depressed collector) and auxiliary components (superconducting magnets, gyrotron diagnostics, high-power calorimetric dummy loads). Section 4 deals with present megawatt-class gyrotrons for ITER, W7-X, LHD, EAST, KSTAR and JT-60SA, and also includes tubes for moderate pulse length machines such as ASDEX-U, DIII-D, HL-2A, TCV, QUEST and GAMMA-10. In section 5 the development of future advanced fusion gyrotrons is discussed. These are tubes with higher frequencies for DEMO, multi-frequency (multi-purpose) gyrotrons, stepwise frequency tunable tubes for plasma stabilization, injection-locked and coaxial-cavity multi-megawatt gyrotrons, as well as sub-THz gyrotrons for collective Thomson scattering. Efficiency enhancement via multi-stage depressed collectors, fast oscillation recovery methods and reliability, availability, maintainability and inspectability will be discussed at the end of this section. |
|||||
書誌情報 |
Nuclear Fusion 巻 59, 号 7, p. 073001, 発行日 2019-07 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 0029-5515 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | 10.1088/1741-4326/ab2005 | |||||
関連サイト | ||||||
識別子タイプ | URI | |||||
関連識別子 | https://iopscience.iop.org/article/10.1088/1741-4326/ab2005/meta |