ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Machine-learning assisted steady-state profile predictions using global optimization techniques

https://repo.qst.go.jp/records/77189
https://repo.qst.go.jp/records/77189
f605550c-c403-4f7d-8b05-22fe0eaff82a
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-10-23
タイトル
タイトル Machine-learning assisted steady-state profile predictions using global optimization techniques
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Honda, Mitsuru

× Honda, Mitsuru

WEKO 1004884

Honda, Mitsuru

Search repository
Narita, Emi

× Narita, Emi

WEKO 1004885

Narita, Emi

Search repository
Mitsuru, Honda

× Mitsuru, Honda

WEKO 1004886

en Mitsuru, Honda

Search repository
Emi, Narita

× Emi, Narita

WEKO 1004887

en Emi, Narita

Search repository
抄録
内容記述タイプ Abstract
内容記述 Predicting plasma profiles with a stiff turbulent transport model is important for experimental analysis and development of operation scenarios. Due to the sensitivity of turbulent fluxes to profile gradients, robust predictions are still arduous with a stiff model incorporated in a conventional transport code. With global optimization techniques employed, the new steady-state transport code, global optimization version of the transport equation stable solver, has been developed to overcome these difficulties. It enables us to attain smooth profiles of diffusivity and temperature even though jagged profiles thereof are inclined to emerge in simulations with a stiff model. A neural-network-based surrogate model of a transport model is developed to compensate slow computation inherent to global optimization. Hyperparameter optimization realizes the surrogate model with very good accuracy.
書誌情報 Physics of Plasmas

巻 26, 号 10, p. 102307-1-102307-15, 発行日 2019-10
出版者
出版者 The American Institute of Physics
ISSN
収録物識別子タイプ ISSN
収録物識別子 1070-664X
DOI
識別子タイプ DOI
関連識別子 10.1063/1.5117846
関連サイト
識別子タイプ URI
関連識別子 https://aip.scitation.org/doi/full/10.1063/1.5117846
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:27:17.827720
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3