ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Application of convolutional neural networks for evaluating Helicobacter pylori infection status on the basis of endoscopic images

https://repo.qst.go.jp/records/76802
https://repo.qst.go.jp/records/76802
6f93f1d4-a714-4af5-b841-4c5fd34a0188
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-09-17
タイトル
タイトル Application of convolutional neural networks for evaluating Helicobacter pylori infection status on the basis of endoscopic images
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Shichijo, Satoki

× Shichijo, Satoki

WEKO 997612

Shichijo, Satoki

Search repository
Endo, Yuma

× Endo, Yuma

WEKO 997613

Endo, Yuma

Search repository
Aoyama, Kazuharu

× Aoyama, Kazuharu

WEKO 997614

Aoyama, Kazuharu

Search repository
Takeuchi, Yoshinori

× Takeuchi, Yoshinori

WEKO 997615

Takeuchi, Yoshinori

Search repository
Ozawa, Tsuyoshi

× Ozawa, Tsuyoshi

WEKO 997616

Ozawa, Tsuyoshi

Search repository
Takiyama, Hirotoshi

× Takiyama, Hirotoshi

WEKO 997617

Takiyama, Hirotoshi

Search repository
Matsuo, Keigo

× Matsuo, Keigo

WEKO 997618

Matsuo, Keigo

Search repository
Fujishiro, Mitsuhiro

× Fujishiro, Mitsuhiro

WEKO 997619

Fujishiro, Mitsuhiro

Search repository
Ishihara, Soichiro

× Ishihara, Soichiro

WEKO 997620

Ishihara, Soichiro

Search repository
Ishihara, Ryu

× Ishihara, Ryu

WEKO 997621

Ishihara, Ryu

Search repository
Tada, Tomohiro

× Tada, Tomohiro

WEKO 997622

Tada, Tomohiro

Search repository
Hirotoshi, Takiyama

× Hirotoshi, Takiyama

WEKO 997623

en Hirotoshi, Takiyama

Search repository
Soichiro, Ishihara

× Soichiro, Ishihara

WEKO 997624

en Soichiro, Ishihara

Search repository
抄録
内容記述タイプ Abstract
内容記述 Background and aim: We recently reported the role of artificial intelligence in the diagnosis of Helicobacter pylori (H. pylori) gastritis on the basis of endoscopic images. However, that study included only H. pylori-positive and -negative patients, excluding patients after H. pylori-eradication. In this study, we constructed a convolutional neural network (CNN) and evaluated its ability to ascertain all H. pylori infection statuses.
Methods: A deep CNN was pre-trained and fine-tuned on a dataset of 98,564 endoscopic images from 5236 patients (742 H. pylori-positive, 3649 -negative, and 845 -eradicated). A separate test data set (23,699 images from 847 patients; 70 positive, 493 negative, and 284 eradicated) was evaluated by the CNN.
Results: The trained CNN outputs a continuous number between 0 and 1 as the probability index for H. pylori infection status per image (Pp, H. pylori-positive; Pn, negative; Pe, eradicated). The most probable (largest number) of the three infectious statuses was selected as the ‘CNN diagnosis’. Among 23,699 images, the CNN diagnosed 418 images as positive, 23,034 as negative, and 247 as eradicated.Because of the large number of H. pylori negative findings, the probability of H. pylori-negative was artificially re-defined as Pn 0.9, after which 80% (465/582) of negative diagnoses were accurate, 84% (147/174) eradicated, and 48% (44/91) positive. The time needed to diagnose 23,699 images was 261 seconds.
Conclusion: We used a novel algorithm to construct a CNN for diagnosing H. pylori infection status on the basis of endoscopic images very quickly.
Abbreviations: H. pylori: Helicobacter pylori; CNN: convolutional neural network; AI: artificial intelligence;EGD: esophagogastroduodenoscopies.
書誌情報 Scandinavian Journal of Gastroenterology

巻 54, 号 2, p. 158-163, 発行日 2019-02
出版者
出版者 Tayler & Francis
ISSN
収録物識別子タイプ ISSN
収録物識別子 0036-5521
PubMed番号
識別子タイプ PMID
関連識別子 30879352
DOI
識別子タイプ DOI
関連識別子 10.1080/00365521.2019.1577486
関連サイト
識別子タイプ URI
関連識別子 https://www.tandfonline.com/doi/full/10.1080/00365521.2019.1577486
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:34:35.840702
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3