ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Neural-network-based semi-empirical turbulent particle transport modelling founded on gyrokinetic analyses of JT-60U plasmas

https://repo.qst.go.jp/records/76551
https://repo.qst.go.jp/records/76551
f2bbfa3f-6158-4460-925e-40cbe6e3afb1
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-08-23
タイトル
タイトル Neural-network-based semi-empirical turbulent particle transport modelling founded on gyrokinetic analyses of JT-60U plasmas
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Narita, Emi

× Narita, Emi

WEKO 918385

Narita, Emi

Search repository
Honda, Mitsuru

× Honda, Mitsuru

WEKO 918386

Honda, Mitsuru

Search repository
仲田, 資季

× 仲田, 資季

WEKO 918387

仲田, 資季

Search repository
Yoshida, Maiko

× Yoshida, Maiko

WEKO 918388

Yoshida, Maiko

Search repository
Hayashi, Nobuhiko

× Hayashi, Nobuhiko

WEKO 918389

Hayashi, Nobuhiko

Search repository
Takenaga, Hidenobu

× Takenaga, Hidenobu

WEKO 918390

Takenaga, Hidenobu

Search repository
Narita, Emi

× Narita, Emi

WEKO 918391

en Narita, Emi

Search repository
Honda, Mitsuru

× Honda, Mitsuru

WEKO 918392

en Honda, Mitsuru

Search repository
Yoshida, Maiko

× Yoshida, Maiko

WEKO 918393

en Yoshida, Maiko

Search repository
Hayashi, Nobuhiko

× Hayashi, Nobuhiko

WEKO 918394

en Hayashi, Nobuhiko

Search repository
Takenaga, Hidenobu

× Takenaga, Hidenobu

WEKO 918395

en Takenaga, Hidenobu

Search repository
抄録
内容記述タイプ Abstract
内容記述 Novel turbulent particle transport modelling has been proposed following joint analyses with gyrokinetic calculations and JT-60U experimental data. Here the diagonal (diffusion) and off- diagonal (pinch) transport mechanisms are treated individually. Besides the decomposition, realistic particle sources from neutral-beam fuelling, which have not been discussed in earlier gyrokinetic studies on particle transport, are taken into account. Taking advantage of the features offered by the modelling, the contribution from each transport mechanism to the turbulent particle flux has been quantitatively clarified. Furthermore, a framework has been developed to calculate the turbulent particle flux driven by each transport mechanism accurately and quickly, taking a neural-network-based approach. The framework can be used for fast prediction of density profiles and for investigating the effects of the transport mechanisms on density profile formation.
書誌情報 Nuclear Fusion

巻 59, 号 10, p. 106018-1-106018-11, 発行日 2019-08
出版者
出版者 IOP Science
ISSN
収録物識別子タイプ ISSN
収録物識別子 0029-5515
DOI
識別子タイプ DOI
関連識別子 10.1088/1741-4326/ab2f43
関連サイト
識別子タイプ URI
関連識別子 https://iopscience.iop.org/article/10.1088/1741-4326/ab2f43
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 17:51:33.829564
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3