ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Using a deep neural network for four-dimensional CT artifact reduction in image-guided radiotherapy

https://repo.qst.go.jp/records/76489
https://repo.qst.go.jp/records/76489
9441f038-d5c7-48dc-b192-cf0d6e5caf35
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-08-18
タイトル
タイトル Using a deep neural network for four-dimensional CT artifact reduction in image-guided radiotherapy
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Mori, Shinichiro

× Mori, Shinichiro

WEKO 776805

Mori, Shinichiro

Search repository
Hirai, Ryusuke

× Hirai, Ryusuke

WEKO 776806

Hirai, Ryusuke

Search repository
Sakata, Yukinobu

× Sakata, Yukinobu

WEKO 776807

Sakata, Yukinobu

Search repository
Mori, Shinichiro

× Mori, Shinichiro

WEKO 776808

en Mori, Shinichiro

Search repository
Hirai, Ryusuke

× Hirai, Ryusuke

WEKO 776809

en Hirai, Ryusuke

Search repository
Sakata, Yukinobu

× Sakata, Yukinobu

WEKO 776810

en Sakata, Yukinobu

Search repository
抄録
内容記述タイプ Abstract
内容記述 Introduction: Breathing artifact may affect the quality of four-dimensional computed tomography (4DCT) images. We developed a deep neural network (DNN)-based artifact reduction method.
Methods: We used 857 thoracoabdominal 4DCT data sets scanned with 320-section CT with no 4DCT artifact within any volume (ground-truth image). The limitations of graphics processing unit (GPU) memory prevent importation of CT volume data into the DNN. To simulate 4DCT artifact, we interposed 4DCT images from other breathing phases at selected couch positions.
Two DNNs, DNN1 and DNN2, were trained to maintain the quality of the output image to that of the ground truth by importing a single and 10 CT images, respectively. A third DNN consisting of an artifact classifier and image generator networks was added. The classifier network was based on residual networks and trained to detect CT section interposition-caused artifacts (artifact map). The generator network reduced artifacts by im- porting the coronal image data and the artifact map.
Results: By repeating the 4DCT artifact reduction with coronal images, the geometrical accuracy in the sagittal sections could be improved, especially with DNN3. Diaphragm position was most accurate when DNN3 was applied. DNN2 corrected artifacts by using CT images from other phases, but DNN2 also modified artifact-free regions.
Conclusions: Additional information related to the 4DCT artifact, including information from other respiratory phases (DNN2) and/or artifact regions (DNN3), provided substantial improvement over DNN1. Interposition- related artifacts were reduced by use of an artifact positional map (DNN3).
書誌情報 Physica Medica

巻 65, p. 67-75, 発行日 2019-08
出版者
出版者 Elsevier
ISSN
収録物識別子タイプ ISSN
収録物識別子 1120-1797
DOI
識別子タイプ DOI
関連識別子 10.1016/j.ejmp.2019.08.008
関連サイト
識別子タイプ URI
関連識別子 https://www.sciencedirect.com/science/article/abs/pii/S1120179719301887?dgcid=author
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 18:46:49.453437
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3