ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

The Utility of Applying Various Image Preprocessing Strategies to reduce the ambiguity in Deep Learning-Based Clinical Image Diagnosis

https://repo.qst.go.jp/records/75941
https://repo.qst.go.jp/records/75941
6de48e55-17fa-44b5-b78c-b2da0d4894e5
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-05-30
タイトル
タイトル The Utility of Applying Various Image Preprocessing Strategies to reduce the ambiguity in Deep Learning-Based Clinical Image Diagnosis
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Tachibana, Yasuhiko

× Tachibana, Yasuhiko

WEKO 866171

Tachibana, Yasuhiko

Search repository
Obata, Takayuki

× Obata, Takayuki

WEKO 866172

Obata, Takayuki

Search repository
Kershaw, Jeffrey

× Kershaw, Jeffrey

WEKO 866173

Kershaw, Jeffrey

Search repository
Sakaki, Hironao

× Sakaki, Hironao

WEKO 866174

Sakaki, Hironao

Search repository
Urushihata, Takuya

× Urushihata, Takuya

WEKO 866175

Urushihata, Takuya

Search repository
Omatsu, Tokuhiko

× Omatsu, Tokuhiko

WEKO 866176

Omatsu, Tokuhiko

Search repository
Kishimoto, Riwa

× Kishimoto, Riwa

WEKO 866177

Kishimoto, Riwa

Search repository
Higashi, Tatsuya

× Higashi, Tatsuya

WEKO 866178

Higashi, Tatsuya

Search repository
Tachibana, Yasuhiko

× Tachibana, Yasuhiko

WEKO 866179

en Tachibana, Yasuhiko

Search repository
Obata, Takayuki

× Obata, Takayuki

WEKO 866180

en Obata, Takayuki

Search repository
Kershaw, Jeffrey

× Kershaw, Jeffrey

WEKO 866181

en Kershaw, Jeffrey

Search repository
Sakaki, Hironao

× Sakaki, Hironao

WEKO 866182

en Sakaki, Hironao

Search repository
Urushihata, Takuya

× Urushihata, Takuya

WEKO 866183

en Urushihata, Takuya

Search repository
Omatsu, Tokuhiko

× Omatsu, Tokuhiko

WEKO 866184

en Omatsu, Tokuhiko

Search repository
Kishimoto, Riwa

× Kishimoto, Riwa

WEKO 866185

en Kishimoto, Riwa

Search repository
Higashi, Tatsuya

× Higashi, Tatsuya

WEKO 866186

en Higashi, Tatsuya

Search repository
抄録
内容記述タイプ Abstract
内容記述 Purpose
A general problem of machine-learning algorithms based on the convolutional- neural-network (CNN) technique is that the reason for the output judgement is unclear. The purpose of this study was to introduce a strategy that may facilitate better understanding of how and why a specific judgement was made by the algorithm. The strategy is to preprocess the input image data in different ways to highlight the most important aspects of the images for reaching the output judgement.

Methods
T2-weighted brain image series falling into two age-ranges were used. Classifying each series into one of the two age-ranges was the given task for the CNN model. The images from each series were preprocessed in five different ways to generate five different image sets: 1) subimages from the inner area of the brain, 2) subimages from the periphery of the brain, 3) - 5) subimages of brain parenchyma, gray matter area, and white matter area, respectively, extracted from the subimages of 2). The CNN model was trained and tested in five different ways using one of these image sets. The network architecture and all the parameters for training and testing remained unchanged.

Results
The judgement accuracy achieved by training was different when the image set used for training was different. Some of the differences was statistically significant. The judgement accuracy decreased significantly when either extraparenchymal or gray matter area was removed from the periphery of the brain (P<0.05).

Conclusion
The proposed strategy may help visualize what features of the images were important for the algorithm to reach correct judgement, helping humans to understand how and why a particular judgment was made by a CNN.
書誌情報 Magnetic Resonance in Medical Sciences

巻 19, 号 2, p. 92-98, 発行日 2019-05
ISSN
収録物識別子タイプ ISSN
収録物識別子 1347-3182
PubMed番号
識別子タイプ PMID
関連識別子 31080211
DOI
識別子タイプ DOI
関連識別子 10.2463/mrms.mp.2019-0021
関連サイト
識別子タイプ URI
関連識別子 https://www.jstage.jst.go.jp/article/mrms/19/2/19_mp.2019-0021/_article/-char/ja
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 18:08:23.419421
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3