WEKO3
アイテム
Denoising for a real-time electron spectrometer using a Convolution Neural Network
https://repo.qst.go.jp/records/75759
https://repo.qst.go.jp/records/75759b1a2e04e-97b4-40fb-83e1-c5d640ea93c9
Item type | 会議発表用資料 / Presentation(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2019-04-18 | |||||
タイトル | ||||||
タイトル | Denoising for a real-time electron spectrometer using a Convolution Neural Network | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_c94f | |||||
資源タイプ | conference object | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
塩川, 桂一郎
× 塩川, 桂一郎× 榊, 泰直× 西内, 満美子× 近藤, 康太郎× ドーバー, ニコラス ピーター× ロウ, ヘーゼル フランシス× 今, 亮× 渡辺, 幸信× 神門, 正城× Shiokawa, Keiichiro× Sakaki, Hironao× Nishiuchi, Mamiko× Kondo, Kotaro× Dover, NicholasPeter× Lowe, HazelFrances× Kon, Akira× Watanabe, Yukinobu× Kando, Masaki |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Petawatt class laser-solid interaction experiments [1] are conducted at the ultra-short pulse (40fs), ultra-intense (10^22 W/cm^2) J-KAREN-P laser system[2]. An electron spectrometer (ESM) that can detect up to a maximum electron energy of 30 MeV was used for measurement of the temperature of the hot electron population emitted by the laser-driven plasma. The ESM consists of a 1.0 T magnet, scintillator (DRZ-high) and CCD camera which were placed in the vacuum chamber in order to make real-time measurements. Not only electrons and x-rays emitted by the plasma, but also secondary electron and x-ray emission generated in the vacuum chamber are detected by the ESM. This secondary emission creates background noise which is randomly scattered over the whole of the observed ESM image. Recently, Statistical-Learning methods for analysis of “big data” have progressed rapidly allowing a novel denoising technique, known as the Denoising Auto Encoder (DAE) [3], to be established. The DAE is based on a Convolution Neural Network that transforms features extracted from the raw image to produce a processed image in which the unwanted noise component has been digitally removed. This technique has been shown to be suitable for processing the ESM images for the purpose of denoising. In this report, we compare conventional denoising methods with the DAE. |
|||||
会議概要(会議名, 開催地, 会期, 主催者等) | ||||||
内容記述タイプ | Other | |||||
内容記述 | HEDS2019 | |||||
発表年月日 | ||||||
日付 | 2019-04-25 | |||||
日付タイプ | Issued |