ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Real-time tumor tracking using fluoroscopic imaging with deep neural network analysis

https://repo.qst.go.jp/records/74617
https://repo.qst.go.jp/records/74617
ef6c7291-42ef-4903-8764-33cd89dfb628
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-03-01
タイトル
タイトル Real-time tumor tracking using fluoroscopic imaging with deep neural network analysis
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 平井, 隆介

× 平井, 隆介

WEKO 792532

平井, 隆介

Search repository
坂田, 幸辰

× 坂田, 幸辰

WEKO 792533

坂田, 幸辰

Search repository
森, 慎一郎

× 森, 慎一郎

WEKO 792534

森, 慎一郎

Search repository
Hirai, Ryusuke

× Hirai, Ryusuke

WEKO 792535

en Hirai, Ryusuke

Search repository
Sakata, Yukinobu

× Sakata, Yukinobu

WEKO 792536

en Sakata, Yukinobu

Search repository
Mori, Shinichiro

× Mori, Shinichiro

WEKO 792537

en Mori, Shinichiro

Search repository
抄録
内容記述タイプ Abstract
内容記述 Purpose: To improve respiratory gating accuracy and treatment throughput, we developed a fluoroscopic markerless tumor tracking algorithm based on a deep neural network (DNN).
Methods: In the learning stage, target positions were projected onto digitally reconstructed radiography (DRR) images from four-dimensional computed tomography (4DCT). DRR images were cropped into subimages of the target or surrounding regions to build a network that takes input of the image pattern of subimages and produces a target probability map (TPM) for estimating the target position. Using multiple subimages, a DNN was trained to generate a TPM based on the target position projected onto the DRRs. In the tracking stage, the network takes in the subimages cropped from fluoroscopic images at the same position of the subimages on the DRRs and produces TPMs, which are used to estimate target positions. We integrated the lateral correction to modify an estimated target position by using a linear regression model. We tracked five lung and five liver cases, and calculated tracking accuracy (Euclidian distance in 3D space) by subtracting the estimated position from the reference.
Results: Tracking accuracy averaged over all patients was 1.64 ± 0.73 mm. Accuracy for liver cases (1.37 ± 0.81 mm) was better than that for lung cases (1.90 ± 0.65 mm). Computation time was < 40 ms for a pair of fluoroscopic images.
Conclusions: Our markerless tracking algorithm successfully estimated tumor positions. We believe our results will provide useful information to advance tumor tracking technology.
書誌情報 Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)

巻 50, p. 22-29, 発行日 2019-03
出版者
出版者 Istituti Editoriali e Poligrafici Internazionali
ISSN
収録物識別子タイプ ISSN
収録物識別子 1120-1797
DOI
識別子タイプ DOI
関連識別子 10.1016/j.ejmp.2019.02.006
関連サイト
識別子タイプ URI
関連識別子 https://www.sciencedirect.com/science/article/abs/pii/S1120179719300262?via%3Dihub
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 18:41:20.822335
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3