ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation.

https://repo.qst.go.jp/records/73841
https://repo.qst.go.jp/records/73841
99025b67-008e-4902-b183-5949dbd0d853
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-02-25
タイトル
タイトル Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation.
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 A, Hagiwara,

× A, Hagiwara,

WEKO 823095

A, Hagiwara,

Search repository
Y, Otsuka,

× Y, Otsuka,

WEKO 823096

Y, Otsuka,

Search repository
M, Hori,

× M, Hori,

WEKO 823097

M, Hori,

Search repository
立花, 泰彦

× 立花, 泰彦

WEKO 823098

立花, 泰彦

Search repository
K, Yokoyama,

× K, Yokoyama,

WEKO 823099

K, Yokoyama,

Search repository
S, Fujita,

× S, Fujita,

WEKO 823100

S, Fujita,

Search repository
C, Andica,

× C, Andica,

WEKO 823101

C, Andica,

Search repository
K, Kamagata,

× K, Kamagata,

WEKO 823102

K, Kamagata,

Search repository
R, Irie,

× R, Irie,

WEKO 823103

R, Irie,

Search repository
S, Koshino,

× S, Koshino,

WEKO 823104

S, Koshino,

Search repository
T, Maekawa,

× T, Maekawa,

WEKO 823105

T, Maekawa,

Search repository
L, Chougar,

× L, Chougar,

WEKO 823106

L, Chougar,

Search repository
A, Wada,

× A, Wada,

WEKO 823107

A, Wada,

Search repository
M.Y, Takemura,

× M.Y, Takemura,

WEKO 823108

M.Y, Takemura,

Search repository
N, Hattori,

× N, Hattori,

WEKO 823109

N, Hattori,

Search repository
S, Aoki,

× S, Aoki,

WEKO 823110

S, Aoki,

Search repository
Tachibana, Yasuhiko

× Tachibana, Yasuhiko

WEKO 823111

en Tachibana, Yasuhiko

Search repository
抄録
内容記述タイプ Abstract
内容記述 BACKGROUND AND PURPOSE:
Synthetic FLAIR images are of lower quality than conventional FLAIR images. Here, we aimed to improve the synthetic FLAIR image quality using deep learning with pixel-by-pixel translation through conditional generative adversarial network training.

MATERIALS AND METHODS:
Forty patients with MS were prospectively included and scanned (3T) to acquire synthetic MR imaging and conventional FLAIR images. Synthetic FLAIR images were created with the SyMRI software. Acquired data were divided into 30 training and 10 test datasets. A conditional generative adversarial network was trained to generate improved FLAIR images from raw synthetic MR imaging data using conventional FLAIR images as targets. The peak signal-to-noise ratio, normalized root mean square error, and the Dice index of MS lesion maps were calculated for synthetic and deep learning FLAIR images against conventional FLAIR images, respectively. Lesion conspicuity and the existence of artifacts were visually assessed.

RESULTS:
The peak signal-to-noise ratio and normalized root mean square error were significantly higher and lower, respectively, in generated-versus-synthetic FLAIR images in aggregate intracranial tissues and all tissue segments (all P < .001). The Dice index of lesion maps and visual lesion conspicuity were comparable between generated and synthetic FLAIR images (P = 1 and .59, respectively). Generated FLAIR images showed fewer granular artifacts (P = .003) and swelling artifacts (in all cases) than synthetic FLAIR images.

CONCLUSIONS:
Using deep learning, we improved the synthetic FLAIR image quality by generating FLAIR images that have contrast closer to that of conventional FLAIR images and fewer granular and swelling artifacts, while preserving the lesion contrast.
書誌情報 American Journal of Neuroradiology

巻 40, 号 2, p. 224-230, 発行日 2019-02
出版者
出版者 Williams & Wilkins.
ISSN
収録物識別子タイプ ISSN
収録物識別子 0195-6108
PubMed番号
識別子タイプ PMID
関連識別子 30630834
DOI
識別子タイプ DOI
関連識別子 10.3174/ajnr.A5927
関連サイト
識別子タイプ URI
関連識別子 http://www.ajnr.org/content/40/2/224
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 18:29:16.054731
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3