WEKO3
アイテム
Newly optical imaging systems of change in oxygen metabolism and hemodynamic using awake mice brain
https://repo.qst.go.jp/records/71497
https://repo.qst.go.jp/records/71497d230eed2-5be4-4524-84df-ceb974d3c9de
Item type | 会議発表用資料 / Presentation(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2014-09-22 | |||||
タイトル | ||||||
タイトル | Newly optical imaging systems of change in oxygen metabolism and hemodynamic using awake mice brain | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_c94f | |||||
資源タイプ | conference object | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
田桑, 弘之
× 田桑, 弘之× al., et× 田桑 弘之 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Positron-emission tomography (PET) allows the measurement of cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2) in human and plays an important role in the diagnosis of pathologic conditions and clinical research. On the other hand, in animal studies, there is no optical imaging system for evaluating changes in CBF and CBV, and oxygen metabolism, from the same brain area under awake condition. In the present study, we developed a simultaneous measurement system of laser speckle imaging (LSI) and intrinsic optical signal imaging (IOSI), which was verified by laser–Doppler flowmetry (LDF). Moreover, to measure oxygen metabolism, flavoprotein autofluorescence imaging (FAI) was performed from the same brain area as LSI and IOSI measurements. The change in CBF according to LSI was correlated with that by LDF. Similarly, the change in CBV obtained by IOSI was also correlated with RBC concentration change measured by LDF. The change in oxygen metabolism by FAI was correlated with that in CBF obtained by LSI, although the change in CBF was greater than that in oxygen metabolism. We revealed that the relationship between oxygen metabolism and CBF as measured by our system was in good agreement with the relationship between CMRO2 and CBF in human PET studies. Our measurement system of CBF, CBV and oxygen metabolism is not only useful for studying neurovascular coupling, but also easily corroborates human PET studies. | |||||
会議概要(会議名, 開催地, 会期, 主催者等) | ||||||
内容記述タイプ | Other | |||||
内容記述 | 第37回日本神経科学大会にてポスター発表を行う。 | |||||
発表年月日 | ||||||
日付 | 2014-09-12 | |||||
日付タイプ | Issued |