ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学会発表・講演等
  2. ポスター発表

Unbiased Logan Graphical Analysis Using the Renormalization Method

https://repo.qst.go.jp/records/69796
https://repo.qst.go.jp/records/69796
da825f73-9bf8-4265-af04-543252ed6616
Item type 会議発表用資料 / Presentation(1)
公開日 2009-07-13
タイトル
タイトル Unbiased Logan Graphical Analysis Using the Renormalization Method
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_c94f
資源タイプ conference object
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Hontani, Hidekata

× Hontani, Hidekata

WEKO 685279

Hontani, Hidekata

Search repository
Naganawa, Mika

× Naganawa, Mika

WEKO 685280

Naganawa, Mika

Search repository
Sakaguchi, Kazuya

× Sakaguchi, Kazuya

WEKO 685281

Sakaguchi, Kazuya

Search repository
Sakata, Muneyuki

× Sakata, Muneyuki

WEKO 685282

Sakata, Muneyuki

Search repository
Ishiwata, Kiichi

× Ishiwata, Kiichi

WEKO 685283

Ishiwata, Kiichi

Search repository
Kimura, Yuichi

× Kimura, Yuichi

WEKO 685284

Kimura, Yuichi

Search repository
et.al

× et.al

WEKO 685285

et.al

Search repository
本谷 秀堅

× 本谷 秀堅

WEKO 685286

en 本谷 秀堅

Search repository
長縄 美香

× 長縄 美香

WEKO 685287

en 長縄 美香

Search repository
坂口 和也

× 坂口 和也

WEKO 685288

en 坂口 和也

Search repository
坂田 宗之

× 坂田 宗之

WEKO 685289

en 坂田 宗之

Search repository
石渡 喜一

× 石渡 喜一

WEKO 685290

en 石渡 喜一

Search repository
木村 裕一

× 木村 裕一

WEKO 685291

en 木村 裕一

Search repository
抄録
内容記述タイプ Abstract
内容記述 Objective: The Logan Graphical Analysis (LGA) is used for imaging a distribution volume VT. For LGA, we compute a set of {(x(t), y(t))} from the measured time-activity curves in tissue (tTAC) and plasma (pTAC) to find a best-fitting line y(t) = alpha x(t) + beta. (Eq.1).
Here, x(t) and y(t) are defined as a ratio of an integrated pTAC over tTAC and an integrated tTAC over tTAC, respectively. As known[1] , linear regression (LR) underestimates VT and its unbiased estimator is expected.
Renormalization Method (RM) [2] enables an unbiased maximum likelihood estimation under the existence of inhomogeneous noises both in x and y by successive evaluation of bias. In this study, the applicability of RM to LGA was investigated.
\nMethods: Let Xt = (x(t),y(t),1)T and U=(u1,u2,u3)T. Then, we can rewrite (Eq.1) as XtTU = 0, where ||U|| = 1 and VT = -u1/u2. Let Ct denote the covariance matrix of the noise of Xt. The maximum likelihood estimates of ui minimize JMLE(U) = SIGMA tWt(U) (XtTU)2, where Wt(U)=1/(UTCtU). Though, the perturbation theorem tells us that the estimates become biased.
RM removes the bias by iteratively minimizing JREN(U) instead of JMLE : JREN(U) = SIGMA tWt(U) {(XtTU)2 - UTCtU}, where the last term compensates the bias. In RM, the covariance matrix Ct should be given, and it is unknown in advance. Thus, a set of voxel-based noisy TACs were simulated using physiologically plausible kinetic parameters, and the mean of Ct was calculated from the set of simulated TACs.
We applied RM and LM to synthesized tTACs and to real one of [11C]SA4503-PET. For generating the synthesized data, we simulated a set of voxel-based tTACs using a measured pTAC and the rate constant of [11C]SA4503 [3].
\nResults: [pic_01] The simulation results are summarized in Fig. (A). RM plotted in red was almost identical (y=0.99x+0.23, r2=1.00), and LR plotted in blue showed the underestimation especially in large VT (y=0.70x+6.14, r2=0.94). The estimation of deviation was larger than that of LM. However, RM successfully suppressed the bias.
The figures (B) and (C) show the results of imaging of VT obtained from the real data by RM and by LR, respectively. For the estimation, t* was set to be 15min post-injection. The computational time for RM was 10 min for 60 thousands voxels. RM gave brighter images than LR, and improved their contrast.
\nConclusions: For computing unbiased estimates, we introduced RM. We estimated the average of each Ct based on simulations. Simulation results showed that RM suppresses the bias and has the potential to realize bias-free parametric imaging of VT.
\nReferences:
[1] Slifstein et al., J Nucl Med, 41, 12, 2000.
[2] Kanatani, IEEE PAMI, 16, 3, 320-326, 1994.
[3] Sakata et al., NeuroImage, 35, 1-8, 2007.
会議概要(会議名, 開催地, 会期, 主催者等)
内容記述タイプ Other
内容記述 Brain'09 & BrainPET'09
発表年月日
日付 2009-07-03
日付タイプ Issued
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 20:10:19.534961
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3