ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学会発表・講演等
  2. ポスター発表

Parametric Imaging of the Total Volume of Distribution using MAP Estimation for Logan Graphical Analysis

https://repo.qst.go.jp/records/69425
https://repo.qst.go.jp/records/69425
a7730bce-5c48-4962-82df-6c62cbe73e3c
Item type 会議発表用資料 / Presentation(1)
公開日 2008-08-06
タイトル
タイトル Parametric Imaging of the Total Volume of Distribution using MAP Estimation for Logan Graphical Analysis
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_c94f
資源タイプ conference object
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Shidahara, Miho

× Shidahara, Miho

WEKO 681325

Shidahara, Miho

Search repository
Kimura, Yuichi

× Kimura, Yuichi

WEKO 681326

Kimura, Yuichi

Search repository
Seki, Chie

× Seki, Chie

WEKO 681327

Seki, Chie

Search repository
Naganawa, Mika

× Naganawa, Mika

WEKO 681328

Naganawa, Mika

Search repository
Sakata, Muneyuki

× Sakata, Muneyuki

WEKO 681329

Sakata, Muneyuki

Search repository
Ito, Hiroshi

× Ito, Hiroshi

WEKO 681330

Ito, Hiroshi

Search repository
Suhara, Tetsuya

× Suhara, Tetsuya

WEKO 681331

Suhara, Tetsuya

Search repository
Ishiwata, Kiichi

× Ishiwata, Kiichi

WEKO 681332

Ishiwata, Kiichi

Search repository
Kanno, Iwao

× Kanno, Iwao

WEKO 681333

Kanno, Iwao

Search repository
et.al

× et.al

WEKO 681334

et.al

Search repository
志田原 美保

× 志田原 美保

WEKO 681335

en 志田原 美保

Search repository
木村 裕一

× 木村 裕一

WEKO 681336

en 木村 裕一

Search repository
関 千江

× 関 千江

WEKO 681337

en 関 千江

Search repository
長縄 美香

× 長縄 美香

WEKO 681338

en 長縄 美香

Search repository
坂田 宗之

× 坂田 宗之

WEKO 681339

en 坂田 宗之

Search repository
伊藤 浩

× 伊藤 浩

WEKO 681340

en 伊藤 浩

Search repository
須原 哲也

× 須原 哲也

WEKO 681341

en 須原 哲也

Search repository
石渡 喜一

× 石渡 喜一

WEKO 681342

en 石渡 喜一

Search repository
菅野 巖

× 菅野 巖

WEKO 681343

en 菅野 巖

Search repository
抄録
内容記述タイプ Abstract
内容記述 Introduction: We propose MAP estimation algorithm in graphical analysis (MEGA) to reduce noise-induced bias of the total volume of distribution (VT) images estimated by Logan graphical analysis (GA) [1]. The purpose of this study is to evaluate its applicability using a s1 receptor ligand 11C-SA4503 and a dopamine transporter ligand 11C-PE2I. Methods: In general, MAP estimation calculates a parameter s while maximization of P(D|s)P(s), where P(D|s) and P(s) are likelihood of datasets D and prior probability of s, respectively. In MEGA, the Mahalanobis distance in a feature space was utilized for the likelihood term in MAP, and a uniform distribution between given lower and upper bounds was applied for the prior. Practically, a set of noise free time-activity curves (TACs) was formed with VT and the y-intercept in GA varying in physiological range as a template, and then the most similar TAC was sought out for a given measured TAC in a feature space. The Similarities in shape were measured using the Mahalanobis distance. In simulation, MEGA was compared with other three methods: GA, likelihood estimation in GA (LEGA) [2] and Multilinear analysis (MA1) [2] using 500 noisy TACs under seven physiological conditions (from 9.9 to 61.5 of VT). PET studies of 11C-SA4503 (at baseline and after loading of Fluvoxamine for partial blockade of the s1 receptors) and 11C-PE2I (at baseline) were performed for three normal volunteers and for a normal volunteer, respectively. The VT images of 11C-SA4503 estimated by MEGA were compared with ROI estimates by GA over 4 brain regions. For 11C-PE2I, an estimated VT image by MEGA was also compared against ROI estimates by GA in 12 high and low binding regions. Results: In the simulation study, the estimated VT by GA had large underestimation (y = 0.27x + 8.72, r2 = 0.87; x is true and y is a median of estimates). Applying the other methods (MA1, LEGA, and MEGA), this bias was improved (y = 0.80x + 4.04, r2 = 0.98; y = 0.85x + 3.05, r2 = 0.99; y = 0.96x + 1.21, r2 = 0.99, respectively). MA1 and LEGA increased variance of the estimated VT in simulation and clinical VT images. However, visual improvements of VT images estimated by MEGA
were observed as shown in Figure 1. MEGA was proportional to ROI-based estimated VT: y = 0.81x + 5.5 (r2 = 0.95) for 11CSA4503 and y = 1.05x + 0.28 (r2 = 1.0) for 11C-PE2I, respectively. Conclusion: MEGA could improve estimates of VT in clinical neuroreceptor PET imaging.
会議概要(会議名, 開催地, 会期, 主催者等)
内容記述タイプ Other
内容記述 NeuroReceptor Mapping 2008
発表年月日
日付 2008-07-19
日付タイプ Issued
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 20:14:39.279959
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3