ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学会発表・講演等
  2. 口頭発表

Four-dimensional computed tomography artifact correction using deep neural network

https://repo.qst.go.jp/records/66913
https://repo.qst.go.jp/records/66913
6415a8a3-aabb-405e-95dd-336995e1d1eb
Item type 会議発表用資料 / Presentation(1)
公開日 2018-09-18
タイトル
タイトル Four-dimensional computed tomography artifact correction using deep neural network
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_c94f
資源タイプ conference object
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 森, 慎一郎

× 森, 慎一郎

WEKO 657830

森, 慎一郎

Search repository
平井, 隆介

× 平井, 隆介

WEKO 657831

平井, 隆介

Search repository
坂田, 幸辰

× 坂田, 幸辰

WEKO 657832

坂田, 幸辰

Search repository
森 慎一郎

× 森 慎一郎

WEKO 657833

en 森 慎一郎

Search repository
平井 隆介

× 平井 隆介

WEKO 657834

en 平井 隆介

Search repository
坂田 幸辰

× 坂田 幸辰

WEKO 657835

en 坂田 幸辰

Search repository
抄録
内容記述タイプ Abstract
内容記述 Purpose
Use of multi-slice CT could degrade a quality of 4DCT images due to irregular breathing. To improve the image quality, we developed three types of deep neural network (DNNs).
\nMaterials and Methods
A total 857 thoracoabdominal 4DCT data was acquired using 320-slice CT. Since 320-slice CT obtained 16cm scan region1 in a single rotation, there is no 4DCT artifact (= reference image). To simulate 4DCT acquired by multi-slice CT, we resorted 4DCT images at respective couch positions randomly by replacing from other respiratory phases. Due to the limitation of GPU memory, however, it is impossible to import 3D/4DCT data sets into the DNN, therefore, a single or multiple image in coronal section were imported. Image generator DNN was based on the convolutional autoencoder with skip connections.
The 1st type DNN was trained to be close to the quality of the output image to that of the reference image by importing a single image. The artifacts might be corrected by selecting the image regions in other respiratory phases. Therefore, each single image at respective respiratory phases was imported into the 2nd type. Both DNNs could correct artifacts at different slice positions independently, as a result, the geometrical accuracy might be degraded in the sagittal section. The 3rd type was included the artifact discriminator and the image generator. The discriminator was based on ResNet50 and trained to detect artifact regions.
\nResults
All DNNs successfully corrected the artifacts on the coronal images. However, the geometrical accuracy in the sagittal sections was improved especially in the 3rd type DNN. Diaphragm position was more accurate than others by applying the 3rd DNN because the artifact map supported the correction position information.
\nConclusion
By providing the correction position, the DNN based 4DCT artifact correction accuracy could be improved.
会議概要(会議名, 開催地, 会期, 主催者等)
内容記述タイプ Other
内容記述 第116回日本医学物理学会学術大会
発表年月日
日付 2018-09-15
日付タイプ Issued
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 20:43:33.443465
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3