WEKO3
アイテム
Quantum Spin Liquid of Kagome-Lattice Antiferromagnet
https://repo.qst.go.jp/records/66590
https://repo.qst.go.jp/records/66590c39cb0f1-89fa-42e1-b849-d18e5f4b28dd
Item type | 会議発表用資料 / Presentation(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2018-01-13 | |||||
タイトル | ||||||
タイトル | Quantum Spin Liquid of Kagome-Lattice Antiferromagnet | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_c94f | |||||
資源タイプ | conference object | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
Sakai, T.
× Sakai, T.× Sakai, Toru |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | The S=1/2 kagome-lattice antiferromagnet is one of interesting frustrated quantum spin systems. The system is supposed to exhibit the quantum spin liquid in the ground state, which was proposed as a possible origin of the high-temprature superconductivity. The spin gap is an important physical quantity to characterize the spin liquid behavior. Whether the S=1/2 kagome-lattice antiferromagnet is gapless or has a finite spin gap, is still an unsolved issue. Because any recently developped numerical calculation methods are not enough to determine it in the thermodynamic limit. Our large-scale numerical diazonalization up to 42-spin clusters and a finite-size scaling analysis indicated that the S=1/2 kagome-lattice antiferromagnet is gapless in the thremodynamic limit[1]. It is consistent with the U(1) Dirac spin liquid theory of the kagome-lattice antiferromagnet[2,3]. On the other hand, some density matrix renormalization group (DMRG) calculations supported the gapped Z2 topological spin liquid theory[4,5]. Our recent numerical diagonalization analysis on the magnetization process of a distorted kagome-lattice antiferromagnet indicated that the perfect kagome-lattice system is just on a quantum critical point[6]. It would be a possible reason why it is difficult to determine whether the perfect kagome-lattice antiferromagnet is gapless or gapped. In the present study, a field derivative analysis is applied for the spin gap issue of the kagome-lattice antiferromanget, using the numerical diagonalization data up to 42-spin clusters. It is consistent with our previous conclusion that it is gapless[7]. [1]H. Nakano and T. Sakai: J. Phys. Soc. Jpn. 80 (2011) 053704. [2]Y. Ran, M. Hermele, P. A. Lee and X. -G. Wen: Phys. Rev. Lett. 98 (2007) 117205. [3]Y. Iqbal, F. Becca, S. Sorella and D. Poilblanc: Phys. Rev. B 87 (2013) 060405(R). [4]S. Yan, D. A. Huse and S. R. White: Science 332 (2011) 1173. [5]S. Nishimoto, N. Shibata and C. Hotta: Nat. Commun. 4 (2013) 2287. [6]H. Nakano and T. Sakai: J. Phys. Soc. Jpn. 83 (2014) 104710. [7]H. Nakano and T. Sakai: in preparation. |
|||||
会議概要(会議名, 開催地, 会期, 主催者等) | ||||||
内容記述タイプ | Other | |||||
内容記述 | Symposium on Trends in Condensed Matter Physics | |||||
発表年月日 | ||||||
日付 | 2017-11-08 | |||||
日付タイプ | Issued |