ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学会発表・講演等
  2. 口頭発表

Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data

https://repo.qst.go.jp/records/66328
https://repo.qst.go.jp/records/66328
fc179650-a333-4162-8f6c-c599016f93d0
Item type 会議発表用資料 / Presentation(1)
公開日 2017-05-22
タイトル
タイトル Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_c94f
資源タイプ conference object
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 ミロソラフ, ヤニック

× ミロソラフ, ヤニック

WEKO 652616

ミロソラフ, ヤニック

Search repository
Bossew, Peter

× Bossew, Peter

WEKO 652617

Bossew, Peter

Search repository
Kurihara, Osamu

× Kurihara, Osamu

WEKO 652618

Kurihara, Osamu

Search repository
ミロソラフ ヤニック

× ミロソラフ ヤニック

WEKO 652619

en ミロソラフ ヤニック

Search repository
栗原 治

× 栗原 治

WEKO 652620

en 栗原 治

Search repository
抄録
内容記述タイプ Abstract
内容記述 Identifying factors which control the temporal dynamics of physical quantities is a recurrent problem in physics. One example is time series of radon concentration in the air, which is influenced by environmental variable such as temperature, humidity, atmospheric stability, and so on.
Understanding the behavior of radon variability in the environment over long-period is necessary in terms of the indoor radon concentration, which is regulated in e.g. the European Union and the US.
This presentation provides an example of the application of five machine learning methods to the indoor radon concentration data obtained at authors’ institute for the period between 2011 and 2016.
These methods were employed to reveal the factors influencing the radon dynamics among various meteorological quantities. The performance of each method was evaluated using six statistical metrics, namely the root mean square error (RMSE), the mean absolute error (MAE), the index of agreement (IA), the fractional bias (FB), ratio (RI) and adjusted coefficient of determination (R2adj).
As a result, it turned out that the Random Forest method was superior to the other methods. More than 80% of the indoor radon concentration values could be explained by this method as a function of temperature, relatively humidity and day of the year.
In comparison, only 35% of the values were explained by a conventional multiple regression analysis using eight predictor quantities.
会議概要(会議名, 開催地, 会期, 主催者等)
内容記述タイプ Other
内容記述 The Third East-European Radon Symposium (TEERAS 2017) における発表
発表年月日
日付 2017-05-16
日付タイプ Issued
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 20:50:11.232908
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3