WEKO3
アイテム
Prediction of high-beta disruptions in JT-60U based on sparse modeling using exhaustive search
https://repo.qst.go.jp/records/49570
https://repo.qst.go.jp/records/4957083549fe2-f644-4023-95c8-ba5ea5a80a15
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2019-02-07 | |||||
タイトル | ||||||
タイトル | Prediction of high-beta disruptions in JT-60U based on sparse modeling using exhaustive search | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
横山達也
× 横山達也× 三善, 悠矢× 日渡, 良爾× 諫山, 明彦× 松永, 剛× 大山, 直幸× 五十嵐康彦× 岡田真人× 小川雄一× Miyoshi, Yuuya× Hiwatari, Ryoji× Isayama, Akihiko× Matsunaga, Go× Oyama, Naoyuki |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Disruption is a critical phenomenon in a tokamak reactor. Although disruption causes serious damage to the reactor, its physical mechanism remains unclear. To realize a tokamak reactor, it is necessary to understand and control the disruption phenomenon. The present research constructs a disruption predictor using experimental high-beta plasma data in the JT-60U tokamak. The predictor was constructed using a support vector machine as a linear discriminant, and we focus on a variable selection problem for the binary classification by sparse modeling, specifically, exhaustively searching the best combinations of variables which maximize the predictor performance. By the sparse modeling, we found that the six input parameters as the best combinations. The selected parameters were the n = 1 mode amplitude |Brn=1| and its time derivative d|Brn=1|/dt, the plasma density (relative to the Greenwald density limit) and its time derivative, and the time derivatives of the plasma internal inductance and plasma elongation. In particular, it was identified that the parameter d|Brn=1|/dt, plays a key role on plasma disruption. We should notice that the combination with other plasma parameters is indispensable and remarkably make it possible to improve the performance of disruption prediction. | |||||
書誌情報 |
Fusion Engineering and Design 巻 140, p. 67-80, 発行日 2019-03 |
|||||
出版者 | ||||||
出版者 | Elsevier | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | 10.1016/j.fusengdes.2019.01.128 |