ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Prediction of high-beta disruptions in JT-60U based on sparse modeling using exhaustive search

https://repo.qst.go.jp/records/49570
https://repo.qst.go.jp/records/49570
83549fe2-f644-4023-95c8-ba5ea5a80a15
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-02-07
タイトル
タイトル Prediction of high-beta disruptions in JT-60U based on sparse modeling using exhaustive search
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 横山達也

× 横山達也

WEKO 872973

横山達也

Search repository
三善, 悠矢

× 三善, 悠矢

WEKO 872974

三善, 悠矢

Search repository
日渡, 良爾

× 日渡, 良爾

WEKO 872975

日渡, 良爾

Search repository
諫山, 明彦

× 諫山, 明彦

WEKO 872976

諫山, 明彦

Search repository
松永, 剛

× 松永, 剛

WEKO 872977

松永, 剛

Search repository
大山, 直幸

× 大山, 直幸

WEKO 872978

大山, 直幸

Search repository
五十嵐康彦

× 五十嵐康彦

WEKO 872979

五十嵐康彦

Search repository
岡田真人

× 岡田真人

WEKO 872980

岡田真人

Search repository
小川雄一

× 小川雄一

WEKO 872981

小川雄一

Search repository
Miyoshi, Yuuya

× Miyoshi, Yuuya

WEKO 872982

en Miyoshi, Yuuya

Search repository
Hiwatari, Ryoji

× Hiwatari, Ryoji

WEKO 872983

en Hiwatari, Ryoji

Search repository
Isayama, Akihiko

× Isayama, Akihiko

WEKO 872984

en Isayama, Akihiko

Search repository
Matsunaga, Go

× Matsunaga, Go

WEKO 872985

en Matsunaga, Go

Search repository
Oyama, Naoyuki

× Oyama, Naoyuki

WEKO 872986

en Oyama, Naoyuki

Search repository
抄録
内容記述タイプ Abstract
内容記述 Disruption is a critical phenomenon in a tokamak reactor. Although disruption causes serious damage to the reactor, its physical mechanism remains unclear. To realize a tokamak reactor, it is necessary to understand and control the disruption phenomenon. The present research constructs a disruption predictor using experimental high-beta plasma data in the JT-60U tokamak. The predictor was constructed using a support vector machine as a linear discriminant, and we focus on a variable selection problem for the binary classification by sparse modeling, specifically, exhaustively searching the best combinations of variables which maximize the predictor performance. By the sparse modeling, we found that the six input parameters as the best combinations. The selected parameters were the n = 1 mode amplitude |Brn=1| and its time derivative d|Brn=1|/dt, the plasma density (relative to the Greenwald density limit) and its time derivative, and the time derivatives of the plasma internal inductance and plasma elongation. In particular, it was identified that the parameter d|Brn=1|/dt, plays a key role on plasma disruption. We should notice that the combination with other plasma parameters is indispensable and remarkably make it possible to improve the performance of disruption prediction.
書誌情報 Fusion Engineering and Design

巻 140, p. 67-80, 発行日 2019-03
出版者
出版者 Elsevier
DOI
識別子タイプ DOI
関連識別子 10.1016/j.fusengdes.2019.01.128
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 18:06:17.870563
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3