ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Disruption Prediction by Support Vector Machine and Neural Network with Exhaustive Search

https://repo.qst.go.jp/records/49551
https://repo.qst.go.jp/records/49551
132489aa-aba3-490d-839c-7b910cff0120
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-02-05
タイトル
タイトル Disruption Prediction by Support Vector Machine and Neural Network with Exhaustive Search
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 YOKOYAMA, Tatsuya

× YOKOYAMA, Tatsuya

WEKO 500526

YOKOYAMA, Tatsuya

Search repository
SUEYOSHI, Takamitsu

× SUEYOSHI, Takamitsu

WEKO 500527

SUEYOSHI, Takamitsu

Search repository
三善, 悠矢

× 三善, 悠矢

WEKO 500528

三善, 悠矢

Search repository
日渡, 良爾

× 日渡, 良爾

WEKO 500529

日渡, 良爾

Search repository
IGARASHI, Yasuhiko

× IGARASHI, Yasuhiko

WEKO 500530

IGARASHI, Yasuhiko

Search repository
OKADA, Masato

× OKADA, Masato

WEKO 500531

OKADA, Masato

Search repository
三善 悠矢

× 三善 悠矢

WEKO 500532

en 三善 悠矢

Search repository
日渡 良爾

× 日渡 良爾

WEKO 500533

en 日渡 良爾

Search repository
抄録
内容記述タイプ Abstract
内容記述 A disruption is an event in which the plasma current suddenly shuts down in a tokamak reactor. Establishing methods to predict, mitigate, and avoid disruptions may be indispensable for realizing a tokamak reactor. In the present study, we have used the large dataset of high-beta experiments at JT-60U to develop a method for
predicting the occurrence of disruptions. The method is based on sparse modeling that exploits the inherent sparseness common to all high-dimensional data, and it enables us to extract the maximum amount of information from the data efficiently. To carry out the sparse modeling, we have used exhaustive searches with a support vector machine and a neural network. In this research, we repeated the training and evaluation of the predictor while changing the combination of plasma parameters. As a result of the exhaustive search, we found |B^n=1_r| and d|B^n=1_r|/dt to be the dominant parameters for disruption predictions. This is not surprising, because MHD instabilities are considered to be the direct triggers of disruption. In addition, we have succeeded in identifying several important parameters that may also be strongly related to disruptions, i.e.,βN, βP, q95, δ, fGW, and f_rad.
書誌情報 Plasma and Fusion Research

巻 13, p. 3405021-1-3405021-4, 発行日 2018-04
DOI
識別子タイプ DOI
関連識別子 10.1585/pfr.13.3405021
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 23:19:12.857909
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3