ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT

https://repo.qst.go.jp/records/49153
https://repo.qst.go.jp/records/49153
b45be038-26ce-4c41-a889-a1cd63531406
Item type 学術雑誌論文 / Journal Article(1)
公開日 2018-08-29
タイトル
タイトル Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Umehara, Kensuke

× Umehara, Kensuke

WEKO 794631

Umehara, Kensuke

Search repository
Ota, Junko

× Ota, Junko

WEKO 794632

Ota, Junko

Search repository
Ishida, Takayuki

× Ishida, Takayuki

WEKO 794633

Ishida, Takayuki

Search repository
Umehara, Kensuke

× Umehara, Kensuke

WEKO 794634

en Umehara, Kensuke

Search repository
Ota, Junko

× Ota, Junko

WEKO 794635

en Ota, Junko

Search repository
Ishida, Takayuki

× Ishida, Takayuki

WEKO 794636

en Ishida, Takayuki

Search repository
抄録
内容記述タイプ Abstract
内容記述 In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.
書誌情報 Journal of digital imaging

巻 31, 号 4, p. 441-450, 発行日 2017-10
出版者
出版者 Springer
ISSN
収録物識別子タイプ ISSN
収録物識別子 0897-1889
PubMed番号
識別子タイプ PMID
関連識別子 29047035
DOI
識別子タイプ DOI
関連識別子 10.1007/s10278-017-0033-z
関連サイト
識別子タイプ URI
関連識別子 https://link.springer.com/article/10.1007/s10278-017-0033-z
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 18:40:19.169588
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3