ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data

https://repo.qst.go.jp/records/49099
https://repo.qst.go.jp/records/49099
ec473b62-8bcd-4e8b-bf8a-f6269439ec1f
Item type 学術雑誌論文 / Journal Article(1)
公開日 2018-07-05
タイトル
タイトル Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Janik, Miroslaw

× Janik, Miroslaw

WEKO 789104

Janik, Miroslaw

Search repository
Bossew, P.

× Bossew, P.

WEKO 789105

Bossew, P.

Search repository
Kurihara, Osamu

× Kurihara, Osamu

WEKO 789106

Kurihara, Osamu

Search repository
Janik, Miroslaw

× Janik, Miroslaw

WEKO 789107

en Janik, Miroslaw

Search repository
Kurihara, Osamu

× Kurihara, Osamu

WEKO 789108

en Kurihara, Osamu

Search repository
抄録
内容記述タイプ Abstract
内容記述 In this paper, as our first purpose, we propose the application of machine learning to reconstruct incomplete or irregularly sampled data of time series indoor radon ( 222 Rn). The physical assumption underlying the modelling is that Rn concentration in the air is controlled by environmental variables such as air temperature and pressure. The algorithms “learn” from complete sections of multivariate series, derive a dependence model and apply it to sections where the controls are available, but not the response (Rn), and in this way complete the Rn series. Three machine learning techniques are applied in this study, namely random forest, its extension called the gradient boosting machine
and deep learning. For a comparison, we apply the classical multiple regression in a generalized linear model version. Performance of the models is evaluated through different metrics. The performance of the gradient boosting machine is found to be superior to that of the other techniques.
書誌情報 Science of The Total Environment

巻 630, p. 1155-1167, 発行日 2018-07
出版者
出版者 Elsevier
ISSN
収録物識別子タイプ ISSN
収録物識別子 0048-9697
DOI
識別子タイプ DOI
関連識別子 10.1016/j.scitotenv.2018.02.233
関連サイト
識別子タイプ URI
関連識別子 https://www.sciencedirect.com/science/article/pii/S0048969718306314?via%3Dihub
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 18:42:39.829053
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3