WEKO3
アイテム
Developing new PET tracers to image the growth hormone secretagogue receptor 1a (GHS-R1a)
https://repo.qst.go.jp/records/48389
https://repo.qst.go.jp/records/48389412efad2-b502-4bcf-b3ef-1a453ba697c9
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2017-11-30 | |||||
タイトル | ||||||
タイトル | Developing new PET tracers to image the growth hormone secretagogue receptor 1a (GHS-R1a) | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
アクセス権 | ||||||
アクセス権 | metadata only access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_14cb | |||||
著者 |
Kawamura, Kazunori
× Kawamura, Kazunori× Fujinaga, Masayuki× Shimoda, Yoko× Yamasaki, Tomoteru× Zhang, Yiding× Hatori, Akiko× Xie, Lin× Wakizaka, Hidekatsu× Kumata, Katsushi× Ohkubo, Takayuki× Kurihara, Yusuke× Ogawa, Masanao× Nengaki, Nobuki× Zhang, Ming-Rong× 河村 和紀× 藤永 雅之× 下田 陽子× 山崎 友照× 張 一鼎× 羽鳥 晶子× 謝 琳× 脇坂 秀克× 熊田 勝志× 大久保 崇之× 栗原 雄祐× 小川 政直× 念垣 信樹× 張 明栄 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Introduction: `The growth hormone secretagogue receptor 1a (GHS-R1a) is the orphan G-protein-coupled receptor, and its endogenous ligand is ghrelin. GHS-R1a contributes to regulation of glucose homeostasis,memory and learning, food addiction, and neuroprotection. Several PET tracers for GHS-R1a have been developed, but none have been reported to be clinically applicable to GHS-R1a imaging. In this study, we developed three new PET tracers for GHSR1a: 18F-labeled 6-(4-chlorophenyl)-3-((1-(2-fluoroethyl)piperidin-3-yl)methyl)-2-(o-tolyl)quinazolin-4(3H)-one (1), 11C-labeled 6-(4-chlorophenyl)-3-((1-(2-methoxyethyl)piperidin-3-yl)methyl)-2-(o-tolyl)quinazolin-4(3H)- one (2), and 11C-labeled (S)-(4-(1H-indole-6-carbonyl)-3-methylpiperazin-1-yl)(4′-methoxy-[1,1′-biphenyl]-4- yl)methanone (3). Methods: [18F]1was synthesized by the 18F-fluoroethylation; [11C]2 or [11C]3 was synthesized by the 11C-methylation. Biodistribution studies and PET studies were conducted in mice. Results:Wesuccessfully radiosynthesized [18F]1, [11C]2, and[11C]3 with appropriate radioactivity for the animal study. In the ex vivo biodistribution study, 60 min following injection, the radioactivity level of [18F]1 was relatively high in the small intestine, that of [11C]2was high in the liver, and that of [11C]3was high in the pancreas. The radioactivity levels of the three PET tracerswere relatively low in the brain. Under pretreatmentwith YIL781 (a selective and high affinity antagonist for GHS-R1a), the pancreas radioactivity level at 30min following [11C]3 injectionwas significantly reduced to 55% of control, but the radioactivity in the brain was not changed. In the PET study under control conditions, high radioactivity levels in the liver and pancreas were observed following [11C]3 injection. With YIL781 pretreatment, the accumulated radioactivity in the pancreas 15–60 min after [11C]3 injection was significantly decreased to 78% of control. Conclusion: [11C]3 exhibited relatively high uptake and in vivo specific binding to GHS-R1a in the mouse pancreas. [11C]3 may be a useful PET tracers for in vivo imaging of GHS-R1a in the pancreas. |
|||||
書誌情報 |
Nuclear Medicine and Biology 巻 52, p. 49-56, 発行日 2017-06 |
|||||
出版者 | ||||||
出版者 | Elsevier | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 0969-8051 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | 10.1016/j.nucmedbio.2017.06.002 |