ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Computational neuroscience approach to biomarkers and treatments for mental disorders

https://repo.qst.go.jp/records/48259
https://repo.qst.go.jp/records/48259
9a5f2344-c571-4480-8b97-8d6905b7430a
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-08-02
タイトル
タイトル Computational neuroscience approach to biomarkers and treatments for mental disorders
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Yahata, Noriaki

× Yahata, Noriaki

WEKO 485036

Yahata, Noriaki

Search repository
Kasai, Kiyoto

× Kasai, Kiyoto

WEKO 485037

Kasai, Kiyoto

Search repository
Kawato, Mitsuo

× Kawato, Mitsuo

WEKO 485038

Kawato, Mitsuo

Search repository
八幡 憲明

× 八幡 憲明

WEKO 485039

en 八幡 憲明

Search repository
抄録
内容記述タイプ Abstract
内容記述 Psychiatry research has long experienced a stagnation stemming from a lack of understanding of the neurobiological underpinnings of phenomenologically defined mental disorders. Recently, the application of computational neuroscience to psychiatry research has shown great promise in establishing a link between phenomenological and pathophysiological aspects of mental disorders, thereby recasting current nosology in more biologically meaningful dimensions. In this review, we highlight recent investigations in computational neuroscience that undertook either theory- or data-driven approaches to quantitatively delineate the mechanisms of mental disorders. The theory-driven approach, including reinforcement learning models, plays an integrative role in this process by enabling correspondence between behavior and disorder-specific alterations at multiple levels of brain organization, ranging from molecules to cells to circuits. Previous studies explicated a plethora of defining symptoms of mental disorders, including anhedonia, inattention, and poor executive function. The data-driven approach, on the other hand, is an emerging field in computational neuroscience seeking to identify disorder-specific features among high-dimensional big data. Remarkably, various machine-learning techniques have been applied to neuroimaging data, and the extracted disorder-specific features were used for automatic case-control classification. For many disorders, the reported accuracies have reached 90% or more. However, we note that rigorous tests on independent cohorts are critically required to translate this research into clinical applications. Finally, we discuss the utility of the disorder-specific features found by the data-driven approach to psychiatric therapies, including neurofeedback. Such developments will allow simultaneous diagnosis and treatment of mental disorders using neuroimaging, thereby establishing “theranostics” for the first time in clinical psychiatry.
書誌情報 Psychiatry and Clinical Neurosciences

巻 71, 号 4, p. 215-237, 発行日 2017-04
出版者
出版者 Wiley-Blackwell (Wiley-JAPAN)
ISSN
収録物識別子タイプ ISSN
収録物識別子 1440-1819
PubMed番号
識別子タイプ PMID
関連識別子 28032396
DOI
識別子タイプ DOI
関連識別子 10.1111/pcn.12502
関連サイト
識別子タイプ URI
関連識別子 http://onlinelibrary.wiley.com/doi/10.1111/pcn.12502/abstract
関連名称 http://onlinelibrary.wiley.com/doi/10.1111/pcn.12502/abstract
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 23:30:09.492617
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3