ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 原著論文

Variational bayesian least squares: An application to brain-machine interface data

https://repo.qst.go.jp/records/45868
https://repo.qst.go.jp/records/45868
6271c669-9ec1-4510-8a87-5c05dd3e02ea
Item type 学術雑誌論文 / Journal Article(1)
公開日 2010-07-28
タイトル
タイトル Variational bayesian least squares: An application to brain-machine interface data
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
アクセス権
アクセス権 metadata only access
アクセス権URI http://purl.org/coar/access_right/c_14cb
著者 Ting, Jo-Anne

× Ting, Jo-Anne

WEKO 456223

Ting, Jo-Anne

Search repository
Yamamoto, Kenji

× Yamamoto, Kenji

WEKO 456224

Yamamoto, Kenji

Search repository
et.al

× et.al

WEKO 456225

et.al

Search repository
山本 憲司

× 山本 憲司

WEKO 456226

en 山本 憲司

Search repository
抄録
内容記述タイプ Abstract
内容記述 An increasing number of projects in neuroscience require statistical analysis of high-dimensional data, as, for instance, in the prediction of behavior from neural firing or in the operation of artificial devices from brain recordings in brain-machine interfaces. Although prevalent, classical linear analysis techniques are often numerically fragile in high dimensions due to irrelevant, redundant, and noisy information. We developed a robust Bayesian linear regression algorithm that automatically detects relevant features and excludes irrelevant ones, all in a computationally efficient manner. In comparison with standard linear methods, the new Bayesian method regularizes against overfitting, is computationally efficient (unlike previously proposed variational linear regression methods, is suitable for data sets with large numbers of samples and a very high number of input dimensions) and is easy to use, thus demonstrating its potential as a drop-in replacement for other linear regression techniques. We evaluate our technique on synthetic data sets and on several neurophysiological data sets. For these neurophysiological data sets we address the question of whether EMG data collected from arm movements of monkeys can be faithfully reconstructed from neural activity in motor cortices. Results demonstrate the success of our newly developed method, in comparison with other approaches in the literature, and, from the neurophysiological point of view, confirms recent findings on the organization of the motor cortex. Finally, an incremental, real-time version of our algorithm demonstrates the suitability of our approach for real-time interfaces between brains and machines.
書誌情報 Neural Networks

巻 21, 号 8, p. 1112-1131, 発行日 2008-10
ISSN
収録物識別子タイプ ISSN
収録物識別子 0893-6080
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 23:58:37.822848
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3