量研学術機関リポジトリ「QST-Repository」は、国立研究開発法人 量子科学技術研究開発機構に所属する職員等が生み出した学術成果(学会誌発表論文、学会発表、研究開発報告書、特許等)を集積しインターネット上で広く公開するサービスです。 Welcome to QST-Repository where we accumulates and discloses the academic research results(Journal Publications, Conference presentation, Research and Development Report, Patent, etc.) of the members of National Institutes for Quantum and Radiological Science and Technology.
Thank you very much for using our website. On the 11th of March 2019, this site was moved from our own network server to the JAIRO Cloud network server. If you previously bookmarked this site, that bookmark will no longer work. We would be grateful if you could bookmark the website again. Thank you very much for your understanding and cooperation.
For clinical studies, the effects of the intrinsic radioactivity of lutetium-based scintillators such as LSO used in PET imaging can be ignored within a narrow energy window. However, the intrinsic radioactivity becomes problematic when used in low-count-rate situations such as gene expression imaging or in-beam PET imaging. Time-of-flight (TOF) measurement capability promises not only to improve PET image quality, but also to reduce intrinsic random coincidences. On the other hand, we have developed a new reduction method for intrinsic random coincidence events based on multiple-coincidence information. Without the energy window, an intrinsic random coincidence is detected simultaneously with an intrinsic true coincidence as a multiple coincidence. The multiple-coincidence events can serve as a guide to identification of the intrinsic coincidences. After rejection of multiple-coincidence events detected with a wide energy window, data obtained included a few intrinsic random and many intrinsic true coincidence events. We analyzed the effect of intrinsic radioactivity and used Monte Carlo simulation to test both the TOF-based method and the developed multiple-coincidence-based (MC-based) method for a whole-body LSO-PET scanner. Using the TOF- and MC-based reduction methods separately, we could reduce the intrinsic random coincidence rates by 77 and 30 %, respectively. Also, the intrinsic random coincidence rate could be reduced by 84 % when the TOF+MC reduction methods were applied. The developed MC-based method showed reduced number of the intrinsic random coincidence events, but the reduction performance was limited compared to that of the TOF-based reduction method.