@misc{oai:repo.qst.go.jp:00083673, author = {Go, Akamatsu and Eiji, Yoshida and Hideaki, Tashima and Shigeki, Ito and Miwako, Takahashi and Taiga, Yamaya and Go, Akamatsu and Eiji, Yoshida and Hideaki, Tashima and Shigeki, Ito and Miwako, Takahashi and Taiga, Yamaya}, month = {Oct}, note = {Breast-dedicated PET systems are categorized into two geometries: a ring-shaped detector arrangement and a dual flat-panel (FP) detector arrangement. Although there are some advantages in the FP arrangement, PET images are blurred due to the limited angular coverage. To compensate for this issue, we have proposed a dual round-edge (RE) detector arrangement, in which detectors at both edge positions are tilted toward the center of the field-of-view. In this study, for a proof-of-concept of the RE arrangement, we developed the first bench-top prototype. Our original crosshair light-sharing (CLS) depth-of-interaction (DOI) detector was used; it consisted of a 14×14 array of 1.45×1.45×15 mm3 GFAG scintillator crystals coupled with an 8×8 array of silicon photomultipliers each with a photosensitive area of 3.0×3.0 mm2. The data acquisition system was the TOFPET2 ASIC (PETsys Electronics). We examined the conventional FP arrangement and the proposed RE arrangement using 32 CLS detectors. A 22Na point source and a multi-rod phantom (rod diameters: 1.6, 2.2, 3.0, 4.0, 5.0 and 6.0 mm) were used for spatial resolution measurements. The RE arrangement showed better spatial resolution compared with the FP arrangement (64% improvement in the vertical direction). For the multi-rod phantom, in the coronal plane (parallel to the detector surface), the 1.6 mm rods were clearly resolved in both arrangements. However, in the axial plane (perpendicular to the detector surface), the RE arrangement resolved the 2.2 mm rods that had not been resolved by the FP arrangement. We demonstrated that the proposed RE detector arrangement showed better spatial resolution than the conventional FP arrangement., 2021 IEEE NSS/MIC}, title = {First bench-top breast-dedicated PET prototype with a dual round-edge detector arrangement}, year = {2021} }