@misc{oai:repo.qst.go.jp:00083621, author = {Kang, Hangyu and Kang, Hangyu}, month = {Oct}, note = {Coincidence timing resolution (CTR) is one of the important parameters in state-of-the-art clinical positron emission tomography (PET) scanners to increase the signal-to-noise ratio of reconstructed PET images by using time-of-flight (TOF) information. The aim of this study was to enhance the CTR and energy resolution of a silicon photomultiplier (SiPM) based clinical TOF-PET detector by optimizing the crystal surface treatment used for a 20 mm long crystal geometry. The TOF-PET detector consisted of a cerium doped gadolinium fine aluminum gallate (Ce:GFAG) scintillation crystal (3.0 × 3.0 × 20 mm3, C&A, Japan) and an SiPM (Hamamatsu, S13360-3050CS, Japan) with an effective area of 3.0 × 3.0 mm2. s with Eight different types of GFAG crystal surface treatment: mechanical polishing (M.P) of all surfaces and seven different partial saw-cuts (i.e. top, ⅟₂-side lower, ½-side upper, 1-side, 2-side, 3-side, and 4-side) were used to find the optimal treatment. The timing and energy signals were extracted by using a high-frequency SiPM readout circuit and then were digitized by using a CAMAC DAQ system. The 1-side saw-cut resulted in a 14 ps better CTR (203±3 ps) and 1.9% better energy resolution (9.3%) over those of the M.P crystal (CTR=217±4 ps, energy resolution=11.2%). The ⅟₂-side saw-cut enhanced the CTR (203±3 ps), however the energy resolution (12.5%) was degraded due to the variation in light collection efficiency along the crystal depth. In conclusion, the 1-side saw-cut was the optimal crystal surface treatment in terms of CTR and energy resolution for the SiPM based TOF PET detector., 2021 Virtual IEEE Nuclear Science Symposium and Medical Imaging Conference}, title = {Optimization of GFAG Crystal Surface Treatment for SiPM Based Clinical TOF PET Detector}, year = {2021} }