{"created":"2023-05-15T14:59:25.490608+00:00","id":80625,"links":{},"metadata":{"_buckets":{"deposit":"1a88d266-8ad0-417c-955f-dc447db530da"},"_deposit":{"created_by":1,"id":"80625","owners":[1],"pid":{"revision_id":0,"type":"depid","value":"80625"},"status":"published"},"_oai":{"id":"oai:repo.qst.go.jp:00080625","sets":["1"]},"author_link":["1011178","1011180","1011177","1011175","1011174","1011179","1011176"],"item_8_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2020-05","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"886","bibliographicPageStart":"19-00438","bibliographicVolumeNumber":"86","bibliographic_titles":[{"bibliographic_title":"日本機械学会論文集"}]}]},"item_8_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Weibull stress criterion based on the “Local Approach” is applied for rational brittle fracture assessment of steel components\ntaking account of the plastic constraint effect on fracture resistance. Once the cumulative distribution of critical Weibull\nstress is identified for the material itself, that is Weibull shape parameter m as a material constant independent of size/shape of\ncomponents, loading mode and temperature, fracture toughness can be corrected to the fracture resistance of structural\ncomponents on the basis of the Weibull stress criterion. On the other hand, a miniature fracture toughness specimen is\nuseful for evaluating the toughness of local area of the component and limited material such as irradiated test sample. Then,\nthis study focuses on developing a method for identification of shape parameter m of critical Weibull stress distribution using\nminiature specimens. Two types of miniature 3PB (3-point bend) specimen with thickness B=1.65mm that has different\ncrack depth are used to identify the m-value. The m-value determined from the two types of miniature specimen is found to\nbe almost the same as that obtained from normal size specimens with thickness B=15mm, whereas both testing are conducted\nat different temperature. It is demonstrated that the fracture toughness of the steel at the other temperature can be precisely\ncorrected to the fracture resistance of the cracked component with lower crack-tip plastic constraint by means of the m-value\nidentified from test results for two types of miniature specimen. ","subitem_description_type":"Abstract"}]},"item_8_relation_14":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"10.1299/transjsme.19-00438","subitem_relation_type_select":"DOI"}}]},"item_8_relation_17":{"attribute_name":"関連サイト","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"https://www.jstage.jst.go.jp/article/transjsme/86/886/86_19-00438/_article/-char/ja","subitem_relation_type_select":"URI"}}]},"item_8_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2187-9761","subitem_source_identifier_type":"ISSN"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"metadata only access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_14cb"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"清水, 万真"}],"nameIdentifiers":[{"nameIdentifier":"1011174","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"庄司, 博人"}],"nameIdentifiers":[{"nameIdentifier":"1011175","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"加藤, 太一朗"}],"nameIdentifiers":[{"nameIdentifier":"1011176","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"谷川, 博康"}],"nameIdentifiers":[{"nameIdentifier":"1011177","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"大畑, 充"}],"nameIdentifiers":[{"nameIdentifier":"1011178","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Taichiro, Kato","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"1011179","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Hiroyasu, Tanigawa","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"1011180","nameIdentifierScheme":"WEKO"}]}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"微小試験片を用いた脆性破壊限界ワイブル応力分布の決定に関する検討","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"微小試験片を用いた脆性破壊限界ワイブル応力分布の決定に関する検討"}]},"item_type_id":"8","owner":"1","path":["1"],"pubdate":{"attribute_name":"公開日","attribute_value":"2020-10-02"},"publish_date":"2020-10-02","publish_status":"0","recid":"80625","relation_version_is_last":true,"title":["微小試験片を用いた脆性破壊限界ワイブル応力分布の決定に関する検討"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-05-15T19:01:14.143760+00:00"}