@article{oai:repo.qst.go.jp:00048974, author = {Nakashima, Y. and Ichimura, K. and Islam, M.S. and Sakamoto, M. and Ezumi, N. and Hirata, M. and Ichimura, M. and Ikezoe, R. and Imai, T. and Kariya, T. and Katanuma, I. and Kohagura, J. and Minami, R. and Numakura, T. and Yoshikawa, M. and Iijima, T. and Islam, M.M. and Nojiri, K. and Shimizu, K. and Terakado, A. and Togo, S. and 朝倉, 伸幸 and 福本, 正勝 and Hatayama, A. and Hirooka, Y. and Kado, S. and 久保, 博孝 and Masuzaki, S. and Matsuura, H. and 仲野, 友英 and Nagata, S. and Nishino, N. and Ohno, N. and Sagara, A. and Sawada, K. and Shoji, M. and Tonegawa, A. and Ueda, Y. and 朝倉 伸幸 and 福本 正勝 and 久保 博孝 and 仲野 友英}, issue = {11}, journal = {Nuclear Fusion}, month = {Aug}, note = {This paper describes the recent progress in divertor simulation research using the GAMMA10/PDX tandem mirror towards the development of divertors in fusion reactors. During a plasma flow generation experiment in the end cell of the GAMMA 10/PDX, ICRF heating in the anchor cell successfully extended the particle flux up to 3.3 × 1023 m2 s−1. Superimposing the short pulse of the ECH also attained a maximum heat flux of ~30 MW m−2. We have succeeded in achieving and characterizing the detachment of the high-temperature plasma, which is equivalent to the SOL plasma of tokamaks, by using the divertor simulation experimental module (D-module) in the GAMMA 10/PDX end cell, in spite of using a linear device with a short magnetic field line connection length. Various gases (Ar, Xe, Ne and N2) are examined to evaluate the effect of radiation cooling against the plasma flow at the MW m−2 level in the divertor simulation region and the following results are obtained: (i) Xe gas was most effective in the reduction of heat and particle fluxes (1%, 3%, respectively) and has a stronger effect on electron cooling (down to ~1.6 eV) in the used gas species. (ii) Ne gas was less effective. On the other hand, (iii) N2 gas showed more favorable effects than Ar in the lower pressure range. These results will contribute to the progress in detached plasma operation and in clarifying the radiation cooling mechanism towards the development of future divertors.}, title = {Recent progress of divertor simulation research using the GAMMA 10/PDX tandem mirror}, volume = {57}, year = {2017} }